base/math/k_rem_pio2.c

Go to the documentation of this file.
00001 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
00002 /*
00003  * ====================================================
00004  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00005  *
00006  * Developed at SunPro, a Sun Microsystems, Inc. business.
00007  * Permission to use, copy, modify, and distribute this
00008  * software is freely granted, provided that this notice 
00009  * is preserved.
00010  * ====================================================
00011  */
00012 
00013 #if defined(LIBM_SCCS) && !defined(lint)
00014 static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
00015 #endif
00016 
00017 /*
00018  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
00019  * double x[],y[]; int e0,nx,prec; int ipio2[];
00020  * 
00021  * __kernel_rem_pio2 return the last three digits of N with 
00022  *      y = x - N*pi/2
00023  * so that |y| < pi/2.
00024  *
00025  * The method is to compute the integer (mod 8) and fraction parts of 
00026  * (2/pi)*x without doing the full multiplication. In general we
00027  * skip the part of the product that are known to be a huge integer (
00028  * more accurately, = 0 mod 8 ). Thus the number of operations are
00029  * independent of the exponent of the input.
00030  *
00031  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
00032  *
00033  * Input parameters:
00034  *  x[] The input value (must be positive) is broken into nx 
00035  *      pieces of 24-bit integers in double precision format.
00036  *      x[i] will be the i-th 24 bit of x. The scaled exponent 
00037  *      of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 
00038  *      match x's up to 24 bits.
00039  *
00040  *      Example of breaking a double positive z into x[0]+x[1]+x[2]:
00041  *          e0 = ilogb(z)-23
00042  *          z  = scalbn(z,-e0)
00043  *      for i = 0,1,2
00044  *          x[i] = floor(z)
00045  *          z    = (z-x[i])*2**24
00046  *
00047  *
00048  *  y[] ouput result in an array of double precision numbers.
00049  *      The dimension of y[] is:
00050  *          24-bit  precision   1
00051  *          53-bit  precision   2
00052  *          64-bit  precision   2
00053  *          113-bit precision   3
00054  *      The actual value is the sum of them. Thus for 113-bit
00055  *      precison, one may have to do something like:
00056  *
00057  *      long double t,w,r_head, r_tail;
00058  *      t = (long double)y[2] + (long double)y[1];
00059  *      w = (long double)y[0];
00060  *      r_head = t+w;
00061  *      r_tail = w - (r_head - t);
00062  *
00063  *  e0  The exponent of x[0]
00064  *
00065  *  nx  dimension of x[]
00066  *
00067  *      prec    an integer indicating the precision:
00068  *          0   24  bits (single)
00069  *          1   53  bits (double)
00070  *          2   64  bits (extended)
00071  *          3   113 bits (quad)
00072  *
00073  *  ipio2[]
00074  *      integer array, contains the (24*i)-th to (24*i+23)-th 
00075  *      bit of 2/pi after binary point. The corresponding 
00076  *      floating value is
00077  *
00078  *          ipio2[i] * 2^(-24(i+1)).
00079  *
00080  * External function:
00081  *  double scalbn(), floor();
00082  *
00083  *
00084  * Here is the description of some local variables:
00085  *
00086  *  jk  jk+1 is the initial number of terms of ipio2[] needed
00087  *      in the computation. The recommended value is 2,3,4,
00088  *      6 for single, double, extended,and quad.
00089  *
00090  *  jz  local integer variable indicating the number of 
00091  *      terms of ipio2[] used. 
00092  *
00093  *  jx  nx - 1
00094  *
00095  *  jv  index for pointing to the suitable ipio2[] for the
00096  *      computation. In general, we want
00097  *          ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
00098  *      is an integer. Thus
00099  *          e0-3-24*jv >= 0 or (e0-3)/24 >= jv
00100  *      Hence jv = max(0,(e0-3)/24).
00101  *
00102  *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
00103  *
00104  *  q[] double array with integral value, representing the
00105  *      24-bits chunk of the product of x and 2/pi.
00106  *
00107  *  q0  the corresponding exponent of q[0]. Note that the
00108  *      exponent for q[i] would be q0-24*i.
00109  *
00110  *  PIo2[]  double precision array, obtained by cutting pi/2
00111  *      into 24 bits chunks. 
00112  *
00113  *  f[] ipio2[] in floating point 
00114  *
00115  *  iq[]    integer array by breaking up q[] in 24-bits chunk.
00116  *
00117  *  fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
00118  *
00119  *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
00120  *      it also indicates the *sign* of the result.
00121  *
00122  */
00123 
00124 
00125 /*
00126  * Constants:
00127  * The hexadecimal values are the intended ones for the following 
00128  * constants. The decimal values may be used, provided that the 
00129  * compiler will convert from decimal to binary accurately enough 
00130  * to produce the hexadecimal values shown.
00131  */
00132 
00133 #include "math.h"
00134 #include "mathP.h"
00135 
00136 #ifdef __STDC__
00137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
00138 #else
00139 static int init_jk[] = {2,3,4,6}; 
00140 #endif
00141 
00142 #ifdef __STDC__
00143 static const double PIo2[] = {
00144 #else
00145 static double PIo2[] = {
00146 #endif
00147   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
00148   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
00149   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
00150   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
00151   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
00152   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
00153   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
00154   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
00155 };
00156 
00157 #ifdef __STDC__
00158 static const double         
00159 #else
00160 static double           
00161 #endif
00162 zero   = 0.0,
00163 one    = 1.0,
00164 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
00165 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
00166 
00167 #ifdef __STDC__
00168     int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 
00169 #else
00170     int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)     
00171     double x[], y[]; int e0,nx,prec; int32_t ipio2[];
00172 #endif
00173 {
00174     int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
00175     double z,fw,f[20],fq[20],q[20];
00176 
00177     /* initialize jk*/
00178     jk = init_jk[prec];
00179     jp = jk;
00180 
00181     /* determine jx,jv,q0, note that 3>q0 */
00182     jx =  nx-1;
00183     jv = (e0-3)/24; if(jv<0) jv=0;
00184     q0 =  e0-24*(jv+1);
00185 
00186     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
00187     j = jv-jx; m = jx+jk;
00188     for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
00189 
00190     /* compute q[0],q[1],...q[jk] */
00191     for (i=0;i<=jk;i++) {
00192         for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
00193     }
00194 
00195     jz = jk;
00196 recompute:
00197     /* distill q[] into iq[] reversingly */
00198     for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
00199         fw    =  (double)((int32_t)(twon24* z));
00200         iq[i] =  (int32_t)(z-two24*fw);
00201         z     =  q[j-1]+fw;
00202     }
00203 
00204     /* compute n */
00205     z  = scalbn(z,q0);      /* actual value of z */
00206     z -= 8.0*floor(z*0.125);        /* trim off integer >= 8 */
00207     n  = (int32_t) z;
00208     z -= (double)n;
00209     ih = 0;
00210     if(q0>0) {  /* need iq[jz-1] to determine n */
00211         i  = (iq[jz-1]>>(24-q0)); n += i;
00212         iq[jz-1] -= i<<(24-q0);
00213         ih = iq[jz-1]>>(23-q0);
00214     } 
00215     else if(q0==0) ih = iq[jz-1]>>23;
00216     else if(z>=0.5) ih=2;
00217 
00218     if(ih>0) {  /* q > 0.5 */
00219         n += 1; carry = 0;
00220         for(i=0;i<jz ;i++) {    /* compute 1-q */
00221         j = iq[i];
00222         if(carry==0) {
00223             if(j!=0) {
00224             carry = 1; iq[i] = 0x1000000- j;
00225             }
00226         } else  iq[i] = 0xffffff - j;
00227         }
00228         if(q0>0) {      /* rare case: chance is 1 in 12 */
00229             switch(q0) {
00230             case 1:
00231                iq[jz-1] &= 0x7fffff; break;
00232             case 2:
00233                iq[jz-1] &= 0x3fffff; break;
00234             }
00235         }
00236         if(ih==2) {
00237         z = one - z;
00238         if(carry!=0) z -= scalbn(one,q0);
00239         }
00240     }
00241 
00242     /* check if recomputation is needed */
00243     if(z==zero) {
00244         j = 0;
00245         for (i=jz-1;i>=jk;i--) j |= iq[i];
00246         if(j==0) { /* need recomputation */
00247         for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
00248 
00249         for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
00250             f[jx+i] = (double) ipio2[jv+i];
00251             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
00252             q[i] = fw;
00253         }
00254         jz += k;
00255         goto recompute;
00256         }
00257     }
00258 
00259     /* chop off zero terms */
00260     if(z==0.0) {
00261         jz -= 1; q0 -= 24;
00262         while(iq[jz]==0) { jz--; q0-=24;}
00263     } else { /* break z into 24-bit if necessary */
00264         z = scalbn(z,-q0);
00265         if(z>=two24) { 
00266         fw = (double)((int32_t)(twon24*z));
00267         iq[jz] = (int32_t)(z-two24*fw);
00268         jz += 1; q0 += 24;
00269         iq[jz] = (int32_t) fw;
00270         } else iq[jz] = (int32_t) z ;
00271     }
00272 
00273     /* convert integer "bit" chunk to floating-point value */
00274     fw = scalbn(one,q0);
00275     for(i=jz;i>=0;i--) {
00276         q[i] = fw*(double)iq[i]; fw*=twon24;
00277     }
00278 
00279     /* compute PIo2[0,...,jp]*q[jz,...,0] */
00280     for(i=jz;i>=0;i--) {
00281         for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
00282         fq[jz-i] = fw;
00283     }
00284 
00285     /* compress fq[] into y[] */
00286     switch(prec) {
00287         case 0:
00288         fw = 0.0;
00289         for (i=jz;i>=0;i--) fw += fq[i];
00290         y[0] = (ih==0)? fw: -fw; 
00291         break;
00292         case 1:
00293         case 2:
00294         fw = 0.0;
00295         for (i=jz;i>=0;i--) fw += fq[i]; 
00296         y[0] = (ih==0)? fw: -fw; 
00297         fw = fq[0]-fw;
00298         for (i=1;i<=jz;i++) fw += fq[i];
00299         y[1] = (ih==0)? fw: -fw; 
00300         break;
00301         case 3: /* painful */
00302         for (i=jz;i>0;i--) {
00303             fw      = fq[i-1]+fq[i]; 
00304             fq[i]  += fq[i-1]-fw;
00305             fq[i-1] = fw;
00306         }
00307         for (i=jz;i>1;i--) {
00308             fw      = fq[i-1]+fq[i]; 
00309             fq[i]  += fq[i-1]-fw;
00310             fq[i-1] = fw;
00311         }
00312         for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 
00313         if(ih==0) {
00314             y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
00315         } else {
00316             y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
00317         }
00318     }
00319     return n&7;
00320 }

Generated on Tue Feb 2 17:46:05 2010 for RTAI API by  doxygen 1.4.7