base/math/e_pow.c

Go to the documentation of this file.
00001 /* @(#)e_pow.c 5.1 93/09/24 */
00002 /*
00003  * ====================================================
00004  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00005  *
00006  * Developed at SunPro, a Sun Microsystems, Inc. business.
00007  * Permission to use, copy, modify, and distribute this
00008  * software is freely granted, provided that this notice 
00009  * is preserved.
00010  * ====================================================
00011  */
00012 
00013 #if defined(LIBM_SCCS) && !defined(lint)
00014 static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
00015 #endif
00016 
00017 /* __ieee754_pow(x,y) return x**y
00018  *
00019  *            n
00020  * Method:  Let x =  2   * (1+f)
00021  *  1. Compute and return log2(x) in two pieces:
00022  *      log2(x) = w1 + w2,
00023  *     where w1 has 53-24 = 29 bit trailing zeros.
00024  *  2. Perform y*log2(x) = n+y' by simulating muti-precision 
00025  *     arithmetic, where |y'|<=0.5.
00026  *  3. Return x**y = 2**n*exp(y'*log2)
00027  *
00028  * Special cases:
00029  *  1.  (anything) ** 0  is 1
00030  *  2.  (anything) ** 1  is itself
00031  *  3.  (anything) ** NAN is NAN
00032  *  4.  NAN ** (anything except 0) is NAN
00033  *  5.  +-(|x| > 1) **  +INF is +INF
00034  *  6.  +-(|x| > 1) **  -INF is +0
00035  *  7.  +-(|x| < 1) **  +INF is +0
00036  *  8.  +-(|x| < 1) **  -INF is +INF
00037  *  9.  +-1         ** +-INF is NAN
00038  *  10. +0 ** (+anything except 0, NAN)               is +0
00039  *  11. -0 ** (+anything except 0, NAN, odd integer)  is +0
00040  *  12. +0 ** (-anything except 0, NAN)               is +INF
00041  *  13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
00042  *  14. -0 ** (odd integer) = -( +0 ** (odd integer) )
00043  *  15. +INF ** (+anything except 0,NAN) is +INF
00044  *  16. +INF ** (-anything except 0,NAN) is +0
00045  *  17. -INF ** (anything)  = -0 ** (-anything)
00046  *  18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
00047  *  19. (-anything except 0 and inf) ** (non-integer) is NAN
00048  *
00049  * Accuracy:
00050  *  pow(x,y) returns x**y nearly rounded. In particular
00051  *          pow(integer,integer)
00052  *  always returns the correct integer provided it is 
00053  *  representable.
00054  *
00055  * Constants :
00056  * The hexadecimal values are the intended ones for the following 
00057  * constants. The decimal values may be used, provided that the 
00058  * compiler will convert from decimal to binary accurately enough 
00059  * to produce the hexadecimal values shown.
00060  */
00061 
00062 #include "math.h"
00063 #include "mathP.h"
00064 
00065 #ifdef __STDC__
00066 static const double 
00067 #else
00068 static double 
00069 #endif
00070 bp[] = {1.0, 1.5,},
00071 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
00072 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
00073 zero    =  0.0,
00074 one =  1.0,
00075 two =  2.0,
00076 two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
00077 huge    =  1.0e300,
00078 tiny    =  1.0e-300,
00079     /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
00080 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
00081 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
00082 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
00083 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
00084 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
00085 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
00086 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
00087 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
00088 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
00089 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
00090 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
00091 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
00092 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
00093 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
00094 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
00095 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
00096 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
00097 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
00098 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
00099 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
00100 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
00101 
00102 #ifdef __STDC__
00103     double __ieee754_pow(double x, double y)
00104 #else
00105     double __ieee754_pow(x,y)
00106     double x, y;
00107 #endif
00108 {
00109     double z,ax,z_h,z_l,p_h,p_l;
00110     double y1,t1,t2,r,s,t,u,v,w;
00111     int32_t i,j,k,yisint,n;
00112     int32_t hx,hy,ix,iy;
00113     u_int32_t lx,ly;
00114 
00115     EXTRACT_WORDS(hx,lx,x);
00116     EXTRACT_WORDS(hy,ly,y);
00117     ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
00118 
00119     /* y==zero: x**0 = 1 */
00120     if((iy|ly)==0) return one;  
00121 
00122     /* +-NaN return x+y */
00123     if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
00124        iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 
00125         return x+y; 
00126 
00127     /* determine if y is an odd int when x < 0
00128      * yisint = 0   ... y is not an integer
00129      * yisint = 1   ... y is an odd int
00130      * yisint = 2   ... y is an even int
00131      */
00132     yisint  = 0;
00133     if(hx<0) {  
00134         if(iy>=0x43400000) yisint = 2; /* even integer y */
00135         else if(iy>=0x3ff00000) {
00136         k = (iy>>20)-0x3ff;    /* exponent */
00137         if(k>20) {
00138             j = ly>>(52-k);
00139             if((j<<(52-k))==ly) yisint = 2-(j&1);
00140         } else if(ly==0) {
00141             j = iy>>(20-k);
00142             if((j<<(20-k))==iy) yisint = 2-(j&1);
00143         }
00144         }       
00145     } 
00146 
00147     /* special value of y */
00148     if(ly==0) {     
00149         if (iy==0x7ff00000) {   /* y is +-inf */
00150             if(((ix-0x3ff00000)|lx)==0)
00151             return  y - y;  /* inf**+-1 is NaN */
00152             else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
00153             return (hy>=0)? y: zero;
00154             else            /* (|x|<1)**-,+inf = inf,0 */
00155             return (hy<0)?-y: zero;
00156         } 
00157         if(iy==0x3ff00000) {    /* y is  +-1 */
00158         if(hy<0) return one/x; else return x;
00159         }
00160         if(hy==0x40000000) return x*x; /* y is  2 */
00161         if(hy==0x3fe00000) {    /* y is  0.5 */
00162         if(hx>=0)   /* x >= +0 */
00163         return __ieee754_sqrt(x);   
00164         }
00165     }
00166 
00167     ax   = fabs(x);
00168     /* special value of x */
00169     if(lx==0) {
00170         if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
00171         z = ax;         /*x is +-0,+-inf,+-1*/
00172         if(hy<0) z = one/z; /* z = (1/|x|) */
00173         if(hx<0) {
00174             if(((ix-0x3ff00000)|yisint)==0) {
00175             z = (z-z)/(z-z); /* (-1)**non-int is NaN */
00176             } else if(yisint==1) 
00177             z = -z;     /* (x<0)**odd = -(|x|**odd) */
00178         }
00179         return z;
00180         }
00181     }
00182     
00183     /* (x<0)**(non-int) is NaN */
00184     if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
00185 
00186     /* |y| is huge */
00187     if(iy>0x41e00000) { /* if |y| > 2**31 */
00188         if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
00189         if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
00190         if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
00191         }
00192     /* over/underflow if x is not close to one */
00193         if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
00194         if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
00195     /* now |1-x| is tiny <= 2**-20, suffice to compute 
00196        log(x) by x-x^2/2+x^3/3-x^4/4 */
00197         t = x-1;        /* t has 20 trailing zeros */
00198         w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
00199         u = ivln2_h*t;  /* ivln2_h has 21 sig. bits */
00200         v = t*ivln2_l-w*ivln2;
00201         t1 = u+v;
00202         SET_LOW_WORD(t1,0);
00203         t2 = v-(t1-u);
00204     } else {
00205         double s2,s_h,s_l,t_h,t_l;
00206         n = 0;
00207     /* take care subnormal number */
00208         if(ix<0x00100000)
00209         {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
00210         n  += ((ix)>>20)-0x3ff;
00211         j  = ix&0x000fffff;
00212     /* determine interval */
00213         ix = j|0x3ff00000;      /* normalize ix */
00214         if(j<=0x3988E) k=0;     /* |x|<sqrt(3/2) */
00215         else if(j<0xBB67A) k=1; /* |x|<sqrt(3)   */
00216         else {k=0;n+=1;ix -= 0x00100000;}
00217         SET_HIGH_WORD(ax,ix);
00218 
00219     /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
00220         u = ax-bp[k];       /* bp[0]=1.0, bp[1]=1.5 */
00221         v = one/(ax+bp[k]);
00222         s = u*v;
00223         s_h = s;
00224         SET_LOW_WORD(s_h,0);
00225     /* t_h=ax+bp[k] High */
00226         t_h = zero;
00227         SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
00228         t_l = ax - (t_h-bp[k]);
00229         s_l = v*((u-s_h*t_h)-s_h*t_l);
00230     /* compute log(ax) */
00231         s2 = s*s;
00232         r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
00233         r += s_l*(s_h+s);
00234         s2  = s_h*s_h;
00235         t_h = 3.0+s2+r;
00236         SET_LOW_WORD(t_h,0);
00237         t_l = r-((t_h-3.0)-s2);
00238     /* u+v = s*(1+...) */
00239         u = s_h*t_h;
00240         v = s_l*t_h+t_l*s;
00241     /* 2/(3log2)*(s+...) */
00242         p_h = u+v;
00243         SET_LOW_WORD(p_h,0);
00244         p_l = v-(p_h-u);
00245         z_h = cp_h*p_h;     /* cp_h+cp_l = 2/(3*log2) */
00246         z_l = cp_l*p_h+p_l*cp+dp_l[k];
00247     /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
00248         t = (double)n;
00249         t1 = (((z_h+z_l)+dp_h[k])+t);
00250         SET_LOW_WORD(t1,0);
00251         t2 = z_l-(((t1-t)-dp_h[k])-z_h);
00252     }
00253 
00254     s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
00255     if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
00256         s = -one;/* (-ve)**(odd int) */
00257 
00258     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
00259     y1  = y;
00260     SET_LOW_WORD(y1,0);
00261     p_l = (y-y1)*t1+y*t2;
00262     p_h = y1*t1;
00263     z = p_l+p_h;
00264     EXTRACT_WORDS(j,i,z);
00265     if (j>=0x40900000) {                /* z >= 1024 */
00266         if(((j-0x40900000)|i)!=0)           /* if z > 1024 */
00267         return s*huge*huge;         /* overflow */
00268         else {
00269         if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
00270         }
00271     } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */
00272         if(((j-0xc090cc00)|i)!=0)       /* z < -1075 */
00273         return s*tiny*tiny;     /* underflow */
00274         else {
00275         if(p_l<=z-p_h) return s*tiny*tiny;  /* underflow */
00276         }
00277     }
00278     /*
00279      * compute 2**(p_h+p_l)
00280      */
00281     i = j&0x7fffffff;
00282     k = (i>>20)-0x3ff;
00283     n = 0;
00284     if(i>0x3fe00000) {      /* if |z| > 0.5, set n = [z+0.5] */
00285         n = j+(0x00100000>>(k+1));
00286         k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
00287         t = zero;
00288         SET_HIGH_WORD(t,n&~(0x000fffff>>k));
00289         n = ((n&0x000fffff)|0x00100000)>>(20-k);
00290         if(j<0) n = -n;
00291         p_h -= t;
00292     } 
00293     t = p_l+p_h;
00294     SET_LOW_WORD(t,0);
00295     u = t*lg2_h;
00296     v = (p_l-(t-p_h))*lg2+t*lg2_l;
00297     z = u+v;
00298     w = v-(z-u);
00299     t  = z*z;
00300     t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
00301     r  = (z*t1)/(t1-two)-(w+z*w);
00302     z  = one-(r-z);
00303     GET_HIGH_WORD(j,z);
00304     j += (n<<20);
00305     if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
00306     else SET_HIGH_WORD(z,j);
00307     return s*z;
00308 }

Generated on Tue Feb 2 17:46:05 2010 for RTAI API by  doxygen 1.4.7