base/math/e_log.c

Go to the documentation of this file.
00001 /* @(#)e_log.c 5.1 93/09/24 */
00002 /*
00003  * ====================================================
00004  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
00005  *
00006  * Developed at SunPro, a Sun Microsystems, Inc. business.
00007  * Permission to use, copy, modify, and distribute this
00008  * software is freely granted, provided that this notice 
00009  * is preserved.
00010  * ====================================================
00011  */
00012 
00013 #if defined(LIBM_SCCS) && !defined(lint)
00014 static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
00015 #endif
00016 
00017 /* __ieee754_log(x)
00018  * Return the logrithm of x
00019  *
00020  * Method :                  
00021  *   1. Argument Reduction: find k and f such that 
00022  *          x = 2^k * (1+f), 
00023  *     where  sqrt(2)/2 < 1+f < sqrt(2) .
00024  *
00025  *   2. Approximation of log(1+f).
00026  *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
00027  *       = 2s + 2/3 s**3 + 2/5 s**5 + .....,
00028  *           = 2s + s*R
00029  *      We use a special Reme algorithm on [0,0.1716] to generate 
00030  *  a polynomial of degree 14 to approximate R The maximum error 
00031  *  of this polynomial approximation is bounded by 2**-58.45. In
00032  *  other words,
00033  *              2      4      6      8      10      12      14
00034  *      R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
00035  *      (the values of Lg1 to Lg7 are listed in the program)
00036  *  and
00037  *      |      2          14          |     -58.45
00038  *      | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
00039  *      |                             |
00040  *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
00041  *  In order to guarantee error in log below 1ulp, we compute log
00042  *  by
00043  *      log(1+f) = f - s*(f - R)    (if f is not too large)
00044  *      log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
00045  *  
00046  *  3. Finally,  log(x) = k*ln2 + log(1+f).  
00047  *              = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
00048  *     Here ln2 is split into two floating point number: 
00049  *          ln2_hi + ln2_lo,
00050  *     where n*ln2_hi is always exact for |n| < 2000.
00051  *
00052  * Special cases:
00053  *  log(x) is NaN with signal if x < 0 (including -INF) ; 
00054  *  log(+INF) is +INF; log(0) is -INF with signal;
00055  *  log(NaN) is that NaN with no signal.
00056  *
00057  * Accuracy:
00058  *  according to an error analysis, the error is always less than
00059  *  1 ulp (unit in the last place).
00060  *
00061  * Constants:
00062  * The hexadecimal values are the intended ones for the following 
00063  * constants. The decimal values may be used, provided that the 
00064  * compiler will convert from decimal to binary accurately enough 
00065  * to produce the hexadecimal values shown.
00066  */
00067 
00068 #include "math.h"
00069 #include "mathP.h"
00070 
00071 #ifdef __STDC__
00072 static const double
00073 #else
00074 static double
00075 #endif
00076 ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
00077 ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
00078 two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
00079 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
00080 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
00081 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
00082 Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
00083 Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
00084 Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
00085 Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
00086 
00087 #ifdef __STDC__
00088 static const double zero   =  0.0;
00089 #else
00090 static double zero   =  0.0;
00091 #endif
00092 
00093 #ifdef __STDC__
00094     double __ieee754_log(double x)
00095 #else
00096     double __ieee754_log(x)
00097     double x;
00098 #endif
00099 {
00100     double hfsq,f,s,z,R,w,t1,t2,dk;
00101     int32_t k,hx,i,j;
00102     u_int32_t lx;
00103 
00104     EXTRACT_WORDS(hx,lx,x);
00105 
00106     k=0;
00107     if (hx < 0x00100000) {          /* x < 2**-1022  */
00108         if (((hx&0x7fffffff)|lx)==0) 
00109         return -two54/zero;     /* log(+-0)=-inf */
00110         if (hx<0) return (x-x)/zero;    /* log(-#) = NaN */
00111         k -= 54; x *= two54; /* subnormal number, scale up x */
00112         GET_HIGH_WORD(hx,x);
00113     } 
00114     if (hx >= 0x7ff00000) return x+x;
00115     k += (hx>>20)-1023;
00116     hx &= 0x000fffff;
00117     i = (hx+0x95f64)&0x100000;
00118     SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
00119     k += (i>>20);
00120     f = x-1.0;
00121     if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
00122         if(f==zero) {if(k==0) return zero;  else {dk=(double)k;
00123                  return dk*ln2_hi+dk*ln2_lo;}
00124         }
00125         R = f*f*(0.5-0.33333333333333333*f);
00126         if(k==0) return f-R; else {dk=(double)k;
00127                  return dk*ln2_hi-((R-dk*ln2_lo)-f);}
00128     }
00129     s = f/(2.0+f); 
00130     dk = (double)k;
00131     z = s*s;
00132     i = hx-0x6147a;
00133     w = z*z;
00134     j = 0x6b851-hx;
00135     t1= w*(Lg2+w*(Lg4+w*Lg6)); 
00136     t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
00137     i |= j;
00138     R = t2+t1;
00139     if(i>0) {
00140         hfsq=0.5*f*f;
00141         if(k==0) return f-(hfsq-s*(hfsq+R)); else
00142              return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
00143     } else {
00144         if(k==0) return f-s*(f-R); else
00145              return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
00146     }
00147 }

Generated on Tue Feb 2 17:46:05 2010 for RTAI API by  doxygen 1.4.7