base/math/s_log1p.c

Go to the documentation of this file.
00001 /* @(#)s_log1p.c 5.1 93/09/24 */ 00002 /* 00003 * ==================================================== 00004 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00005 * 00006 * Developed at SunPro, a Sun Microsystems, Inc. business. 00007 * Permission to use, copy, modify, and distribute this 00008 * software is freely granted, provided that this notice 00009 * is preserved. 00010 * ==================================================== 00011 */ 00012 00013 #if defined(LIBM_SCCS) && !defined(lint) 00014 static char rcsid[] = "$NetBSD: s_log1p.c,v 1.8 1995/05/10 20:47:46 jtc Exp $"; 00015 #endif 00016 00017 /* double log1p(double x) 00018 * 00019 * Method : 00020 * 1. Argument Reduction: find k and f such that 00021 * 1+x = 2^k * (1+f), 00022 * where sqrt(2)/2 < 1+f < sqrt(2) . 00023 * 00024 * Note. If k=0, then f=x is exact. However, if k!=0, then f 00025 * may not be representable exactly. In that case, a correction 00026 * term is need. Let u=1+x rounded. Let c = (1+x)-u, then 00027 * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u), 00028 * and add back the correction term c/u. 00029 * (Note: when x > 2**53, one can simply return log(x)) 00030 * 00031 * 2. Approximation of log1p(f). 00032 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 00033 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 00034 * = 2s + s*R 00035 * We use a special Reme algorithm on [0,0.1716] to generate 00036 * a polynomial of degree 14 to approximate R The maximum error 00037 * of this polynomial approximation is bounded by 2**-58.45. In 00038 * other words, 00039 * 2 4 6 8 10 12 14 00040 * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s 00041 * (the values of Lp1 to Lp7 are listed in the program) 00042 * and 00043 * | 2 14 | -58.45 00044 * | Lp1*s +...+Lp7*s - R(z) | <= 2 00045 * | | 00046 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 00047 * In order to guarantee error in log below 1ulp, we compute log 00048 * by 00049 * log1p(f) = f - (hfsq - s*(hfsq+R)). 00050 * 00051 * 3. Finally, log1p(x) = k*ln2 + log1p(f). 00052 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 00053 * Here ln2 is split into two floating point number: 00054 * ln2_hi + ln2_lo, 00055 * where n*ln2_hi is always exact for |n| < 2000. 00056 * 00057 * Special cases: 00058 * log1p(x) is NaN with signal if x < -1 (including -INF) ; 00059 * log1p(+INF) is +INF; log1p(-1) is -INF with signal; 00060 * log1p(NaN) is that NaN with no signal. 00061 * 00062 * Accuracy: 00063 * according to an error analysis, the error is always less than 00064 * 1 ulp (unit in the last place). 00065 * 00066 * Constants: 00067 * The hexadecimal values are the intended ones for the following 00068 * constants. The decimal values may be used, provided that the 00069 * compiler will convert from decimal to binary accurately enough 00070 * to produce the hexadecimal values shown. 00071 * 00072 * Note: Assuming log() return accurate answer, the following 00073 * algorithm can be used to compute log1p(x) to within a few ULP: 00074 * 00075 * u = 1+x; 00076 * if(u==1.0) return x ; else 00077 * return log(u)*(x/(u-1.0)); 00078 * 00079 * See HP-15C Advanced Functions Handbook, p.193. 00080 */ 00081 00082 #include "math.h" 00083 #include "mathP.h" 00084 00085 #ifdef __STDC__ 00086 static const double 00087 #else 00088 static double 00089 #endif 00090 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 00091 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 00092 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 00093 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 00094 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 00095 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 00096 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 00097 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 00098 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 00099 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 00100 00101 #ifdef __STDC__ 00102 static const double zero = 0.0; 00103 #else 00104 static double zero = 0.0; 00105 #endif 00106 00107 #ifdef __STDC__ 00108 double log1p(double x) 00109 #else 00110 double log1p(x) 00111 double x; 00112 #endif 00113 { 00114 double hfsq,f=0.0,c=0.0,s,z,R,u; 00115 int32_t k,hx,hu=0,ax; 00116 00117 GET_HIGH_WORD(hx,x); 00118 ax = hx&0x7fffffff; 00119 00120 k = 1; 00121 if (hx < 0x3FDA827A) { /* x < 0.41422 */ 00122 if(ax>=0x3ff00000) { /* x <= -1.0 */ 00123 if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */ 00124 else return (x-x)/(x-x); /* log1p(x<-1)=NaN */ 00125 } 00126 if(ax<0x3e200000) { /* |x| < 2**-29 */ 00127 if(two54+x>zero /* raise inexact */ 00128 &&ax<0x3c900000) /* |x| < 2**-54 */ 00129 return x; 00130 else 00131 return x - x*x*0.5; 00132 } 00133 if(hx>0||hx<=((int32_t)0xbfd2bec3)) { 00134 k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */ 00135 } 00136 if (hx >= 0x7ff00000) return x+x; 00137 if(k!=0) { 00138 if(hx<0x43400000) { 00139 u = 1.0+x; 00140 GET_HIGH_WORD(hu,u); 00141 k = (hu>>20)-1023; 00142 c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */ 00143 c /= u; 00144 } else { 00145 u = x; 00146 GET_HIGH_WORD(hu,u); 00147 k = (hu>>20)-1023; 00148 c = 0; 00149 } 00150 hu &= 0x000fffff; 00151 if(hu<0x6a09e) { 00152 SET_HIGH_WORD(u,hu|0x3ff00000); /* normalize u */ 00153 } else { 00154 k += 1; 00155 SET_HIGH_WORD(u,hu|0x3fe00000); /* normalize u/2 */ 00156 hu = (0x00100000-hu)>>2; 00157 } 00158 f = u-1.0; 00159 } 00160 hfsq=0.5*f*f; 00161 if(hu==0) { /* |f| < 2**-20 */ 00162 if(f==zero) {if(k==0) return zero; 00163 else {c += k*ln2_lo; return k*ln2_hi+c;} 00164 } 00165 R = hfsq*(1.0-0.66666666666666666*f); 00166 if(k==0) return f-R; else 00167 return k*ln2_hi-((R-(k*ln2_lo+c))-f); 00168 } 00169 s = f/(2.0+f); 00170 z = s*s; 00171 R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7)))))); 00172 if(k==0) return f-(hfsq-s*(hfsq+R)); else 00173 return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f); 00174 }

Generated on Thu Nov 20 11:49:52 2008 for RTAI API by doxygen 1.3.8