base/math/s_atan.c

Go to the documentation of this file.
00001 /* @(#)s_atan.c 5.1 93/09/24 */ 00002 /* 00003 * ==================================================== 00004 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00005 * 00006 * Developed at SunPro, a Sun Microsystems, Inc. business. 00007 * Permission to use, copy, modify, and distribute this 00008 * software is freely granted, provided that this notice 00009 * is preserved. 00010 * ==================================================== 00011 */ 00012 00013 #if defined(LIBM_SCCS) && !defined(lint) 00014 static char rcsid[] = "$NetBSD: s_atan.c,v 1.8 1995/05/10 20:46:45 jtc Exp $"; 00015 #endif 00016 00017 /* atan(x) 00018 * Method 00019 * 1. Reduce x to positive by atan(x) = -atan(-x). 00020 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument 00021 * is further reduced to one of the following intervals and the 00022 * arctangent of t is evaluated by the corresponding formula: 00023 * 00024 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) 00025 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) 00026 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) 00027 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) 00028 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) 00029 * 00030 * Constants: 00031 * The hexadecimal values are the intended ones for the following 00032 * constants. The decimal values may be used, provided that the 00033 * compiler will convert from decimal to binary accurately enough 00034 * to produce the hexadecimal values shown. 00035 */ 00036 00037 #include "math.h" 00038 #include "mathP.h" 00039 00040 #ifdef __STDC__ 00041 static const double atanhi[] = { 00042 #else 00043 static double atanhi[] = { 00044 #endif 00045 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ 00046 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ 00047 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ 00048 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ 00049 }; 00050 00051 #ifdef __STDC__ 00052 static const double atanlo[] = { 00053 #else 00054 static double atanlo[] = { 00055 #endif 00056 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ 00057 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ 00058 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ 00059 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ 00060 }; 00061 00062 #ifdef __STDC__ 00063 static const double aT[] = { 00064 #else 00065 static double aT[] = { 00066 #endif 00067 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ 00068 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ 00069 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ 00070 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ 00071 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ 00072 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ 00073 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ 00074 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ 00075 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ 00076 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ 00077 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ 00078 }; 00079 00080 #ifdef __STDC__ 00081 static const double 00082 #else 00083 static double 00084 #endif 00085 one = 1.0, 00086 huge = 1.0e300; 00087 00088 #ifdef __STDC__ 00089 double atan(double x) 00090 #else 00091 double atan(x) 00092 double x; 00093 #endif 00094 { 00095 double w,s1,s2,z; 00096 int32_t ix,hx,id; 00097 00098 GET_HIGH_WORD(hx,x); 00099 ix = hx&0x7fffffff; 00100 if(ix>=0x44100000) { /* if |x| >= 2^66 */ 00101 u_int32_t low; 00102 GET_LOW_WORD(low,x); 00103 if(ix>0x7ff00000|| 00104 (ix==0x7ff00000&&(low!=0))) 00105 return x+x; /* NaN */ 00106 if(hx>0) return atanhi[3]+atanlo[3]; 00107 else return -atanhi[3]-atanlo[3]; 00108 } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ 00109 if (ix < 0x3e200000) { /* |x| < 2^-29 */ 00110 if(huge+x>one) return x; /* raise inexact */ 00111 } 00112 id = -1; 00113 } else { 00114 x = fabs(x); 00115 if (ix < 0x3ff30000) { /* |x| < 1.1875 */ 00116 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */ 00117 id = 0; x = (2.0*x-one)/(2.0+x); 00118 } else { /* 11/16<=|x|< 19/16 */ 00119 id = 1; x = (x-one)/(x+one); 00120 } 00121 } else { 00122 if (ix < 0x40038000) { /* |x| < 2.4375 */ 00123 id = 2; x = (x-1.5)/(one+1.5*x); 00124 } else { /* 2.4375 <= |x| < 2^66 */ 00125 id = 3; x = -1.0/x; 00126 } 00127 }} 00128 /* end of argument reduction */ 00129 z = x*x; 00130 w = z*z; 00131 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ 00132 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); 00133 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); 00134 if (id<0) return x - x*(s1+s2); 00135 else { 00136 z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x); 00137 return (hx<0)? -z:z; 00138 } 00139 }

Generated on Thu Nov 20 11:49:51 2008 for RTAI API by doxygen 1.3.8