base/math/k_tan.c

Go to the documentation of this file.
00001 /* @(#)k_tan.c 5.1 93/09/24 */ 00002 /* 00003 * ==================================================== 00004 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00005 * 00006 * Developed at SunPro, a Sun Microsystems, Inc. business. 00007 * Permission to use, copy, modify, and distribute this 00008 * software is freely granted, provided that this notice 00009 * is preserved. 00010 * ==================================================== 00011 */ 00012 00013 #if defined(LIBM_SCCS) && !defined(lint) 00014 static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $"; 00015 #endif 00016 00017 /* __kernel_tan( x, y, k ) 00018 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 00019 * Input x is assumed to be bounded by ~pi/4 in magnitude. 00020 * Input y is the tail of x. 00021 * Input k indicates whether tan (if k=1) or 00022 * -1/tan (if k= -1) is returned. 00023 * 00024 * Algorithm 00025 * 1. Since tan(-x) = -tan(x), we need only to consider positive x. 00026 * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. 00027 * 3. tan(x) is approximated by a odd polynomial of degree 27 on 00028 * [0,0.67434] 00029 * 3 27 00030 * tan(x) ~ x + T1*x + ... + T13*x 00031 * where 00032 * 00033 * |tan(x) 2 4 26 | -59.2 00034 * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 00035 * | x | 00036 * 00037 * Note: tan(x+y) = tan(x) + tan'(x)*y 00038 * ~ tan(x) + (1+x*x)*y 00039 * Therefore, for better accuracy in computing tan(x+y), let 00040 * 3 2 2 2 2 00041 * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) 00042 * then 00043 * 3 2 00044 * tan(x+y) = x + (T1*x + (x *(r+y)+y)) 00045 * 00046 * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then 00047 * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) 00048 * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) 00049 */ 00050 00051 #include "math.h" 00052 #include "mathP.h" 00053 #ifdef __STDC__ 00054 static const double 00055 #else 00056 static double 00057 #endif 00058 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ 00059 pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ 00060 pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ 00061 T[] = { 00062 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ 00063 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ 00064 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ 00065 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ 00066 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ 00067 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ 00068 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ 00069 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ 00070 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ 00071 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ 00072 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ 00073 -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ 00074 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ 00075 }; 00076 00077 #ifdef __STDC__ 00078 double __kernel_tan(double x, double y, int iy) 00079 #else 00080 double __kernel_tan(x, y, iy) 00081 double x,y; int iy; 00082 #endif 00083 { 00084 double z,r,v,w,s; 00085 int32_t ix,hx; 00086 GET_HIGH_WORD(hx,x); 00087 ix = hx&0x7fffffff; /* high word of |x| */ 00088 if(ix<0x3e300000) /* x < 2**-28 */ 00089 {if((int)x==0) { /* generate inexact */ 00090 u_int32_t low; 00091 GET_LOW_WORD(low,x); 00092 if(((ix|low)|(iy+1))==0) return one/fabs(x); 00093 else return (iy==1)? x: -one/x; 00094 } 00095 } 00096 if(ix>=0x3FE59428) { /* |x|>=0.6744 */ 00097 if(hx<0) {x = -x; y = -y;} 00098 z = pio4-x; 00099 w = pio4lo-y; 00100 x = z+w; y = 0.0; 00101 } 00102 z = x*x; 00103 w = z*z; 00104 /* Break x^5*(T[1]+x^2*T[2]+...) into 00105 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + 00106 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) 00107 */ 00108 r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); 00109 v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); 00110 s = z*x; 00111 r = y + z*(s*(r+v)+y); 00112 r += T[0]*s; 00113 w = x+r; 00114 if(ix>=0x3FE59428) { 00115 v = (double)iy; 00116 return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); 00117 } 00118 if(iy==1) return w; 00119 else { /* if allow error up to 2 ulp, 00120 simply return -1.0/(x+r) here */ 00121 /* compute -1.0/(x+r) accurately */ 00122 double a,t; 00123 z = w; 00124 SET_LOW_WORD(z,0); 00125 v = r-(z - x); /* z+v = r+x */ 00126 t = a = -1.0/w; /* a = -1.0/w */ 00127 SET_LOW_WORD(t,0); 00128 s = 1.0+t*z; 00129 return t+a*(s+t*v); 00130 } 00131 }

Generated on Thu Nov 20 11:49:51 2008 for RTAI API by doxygen 1.3.8