base/math/k_rem_pio2.c

Go to the documentation of this file.
00001 /* @(#)k_rem_pio2.c 5.1 93/09/24 */ 00002 /* 00003 * ==================================================== 00004 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00005 * 00006 * Developed at SunPro, a Sun Microsystems, Inc. business. 00007 * Permission to use, copy, modify, and distribute this 00008 * software is freely granted, provided that this notice 00009 * is preserved. 00010 * ==================================================== 00011 */ 00012 00013 #if defined(LIBM_SCCS) && !defined(lint) 00014 static char rcsid[] = "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $"; 00015 #endif 00016 00017 /* 00018 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 00019 * double x[],y[]; int e0,nx,prec; int ipio2[]; 00020 * 00021 * __kernel_rem_pio2 return the last three digits of N with 00022 * y = x - N*pi/2 00023 * so that |y| < pi/2. 00024 * 00025 * The method is to compute the integer (mod 8) and fraction parts of 00026 * (2/pi)*x without doing the full multiplication. In general we 00027 * skip the part of the product that are known to be a huge integer ( 00028 * more accurately, = 0 mod 8 ). Thus the number of operations are 00029 * independent of the exponent of the input. 00030 * 00031 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. 00032 * 00033 * Input parameters: 00034 * x[] The input value (must be positive) is broken into nx 00035 * pieces of 24-bit integers in double precision format. 00036 * x[i] will be the i-th 24 bit of x. The scaled exponent 00037 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 00038 * match x's up to 24 bits. 00039 * 00040 * Example of breaking a double positive z into x[0]+x[1]+x[2]: 00041 * e0 = ilogb(z)-23 00042 * z = scalbn(z,-e0) 00043 * for i = 0,1,2 00044 * x[i] = floor(z) 00045 * z = (z-x[i])*2**24 00046 * 00047 * 00048 * y[] ouput result in an array of double precision numbers. 00049 * The dimension of y[] is: 00050 * 24-bit precision 1 00051 * 53-bit precision 2 00052 * 64-bit precision 2 00053 * 113-bit precision 3 00054 * The actual value is the sum of them. Thus for 113-bit 00055 * precison, one may have to do something like: 00056 * 00057 * long double t,w,r_head, r_tail; 00058 * t = (long double)y[2] + (long double)y[1]; 00059 * w = (long double)y[0]; 00060 * r_head = t+w; 00061 * r_tail = w - (r_head - t); 00062 * 00063 * e0 The exponent of x[0] 00064 * 00065 * nx dimension of x[] 00066 * 00067 * prec an integer indicating the precision: 00068 * 0 24 bits (single) 00069 * 1 53 bits (double) 00070 * 2 64 bits (extended) 00071 * 3 113 bits (quad) 00072 * 00073 * ipio2[] 00074 * integer array, contains the (24*i)-th to (24*i+23)-th 00075 * bit of 2/pi after binary point. The corresponding 00076 * floating value is 00077 * 00078 * ipio2[i] * 2^(-24(i+1)). 00079 * 00080 * External function: 00081 * double scalbn(), floor(); 00082 * 00083 * 00084 * Here is the description of some local variables: 00085 * 00086 * jk jk+1 is the initial number of terms of ipio2[] needed 00087 * in the computation. The recommended value is 2,3,4, 00088 * 6 for single, double, extended,and quad. 00089 * 00090 * jz local integer variable indicating the number of 00091 * terms of ipio2[] used. 00092 * 00093 * jx nx - 1 00094 * 00095 * jv index for pointing to the suitable ipio2[] for the 00096 * computation. In general, we want 00097 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 00098 * is an integer. Thus 00099 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv 00100 * Hence jv = max(0,(e0-3)/24). 00101 * 00102 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. 00103 * 00104 * q[] double array with integral value, representing the 00105 * 24-bits chunk of the product of x and 2/pi. 00106 * 00107 * q0 the corresponding exponent of q[0]. Note that the 00108 * exponent for q[i] would be q0-24*i. 00109 * 00110 * PIo2[] double precision array, obtained by cutting pi/2 00111 * into 24 bits chunks. 00112 * 00113 * f[] ipio2[] in floating point 00114 * 00115 * iq[] integer array by breaking up q[] in 24-bits chunk. 00116 * 00117 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] 00118 * 00119 * ih integer. If >0 it indicates q[] is >= 0.5, hence 00120 * it also indicates the *sign* of the result. 00121 * 00122 */ 00123 00124 00125 /* 00126 * Constants: 00127 * The hexadecimal values are the intended ones for the following 00128 * constants. The decimal values may be used, provided that the 00129 * compiler will convert from decimal to binary accurately enough 00130 * to produce the hexadecimal values shown. 00131 */ 00132 00133 #include "math.h" 00134 #include "mathP.h" 00135 00136 #ifdef __STDC__ 00137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */ 00138 #else 00139 static int init_jk[] = {2,3,4,6}; 00140 #endif 00141 00142 #ifdef __STDC__ 00143 static const double PIo2[] = { 00144 #else 00145 static double PIo2[] = { 00146 #endif 00147 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ 00148 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ 00149 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ 00150 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ 00151 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ 00152 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ 00153 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ 00154 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ 00155 }; 00156 00157 #ifdef __STDC__ 00158 static const double 00159 #else 00160 static double 00161 #endif 00162 zero = 0.0, 00163 one = 1.0, 00164 two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ 00165 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ 00166 00167 #ifdef __STDC__ 00168 int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2) 00169 #else 00170 int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) 00171 double x[], y[]; int e0,nx,prec; int32_t ipio2[]; 00172 #endif 00173 { 00174 int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih; 00175 double z,fw,f[20],fq[20],q[20]; 00176 00177 /* initialize jk*/ 00178 jk = init_jk[prec]; 00179 jp = jk; 00180 00181 /* determine jx,jv,q0, note that 3>q0 */ 00182 jx = nx-1; 00183 jv = (e0-3)/24; if(jv<0) jv=0; 00184 q0 = e0-24*(jv+1); 00185 00186 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ 00187 j = jv-jx; m = jx+jk; 00188 for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j]; 00189 00190 /* compute q[0],q[1],...q[jk] */ 00191 for (i=0;i<=jk;i++) { 00192 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw; 00193 } 00194 00195 jz = jk; 00196 recompute: 00197 /* distill q[] into iq[] reversingly */ 00198 for(i=0,j=jz,z=q[jz];j>0;i++,j--) { 00199 fw = (double)((int32_t)(twon24* z)); 00200 iq[i] = (int32_t)(z-two24*fw); 00201 z = q[j-1]+fw; 00202 } 00203 00204 /* compute n */ 00205 z = scalbn(z,q0); /* actual value of z */ 00206 z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */ 00207 n = (int32_t) z; 00208 z -= (double)n; 00209 ih = 0; 00210 if(q0>0) { /* need iq[jz-1] to determine n */ 00211 i = (iq[jz-1]>>(24-q0)); n += i; 00212 iq[jz-1] -= i<<(24-q0); 00213 ih = iq[jz-1]>>(23-q0); 00214 } 00215 else if(q0==0) ih = iq[jz-1]>>23; 00216 else if(z>=0.5) ih=2; 00217 00218 if(ih>0) { /* q > 0.5 */ 00219 n += 1; carry = 0; 00220 for(i=0;i<jz ;i++) { /* compute 1-q */ 00221 j = iq[i]; 00222 if(carry==0) { 00223 if(j!=0) { 00224 carry = 1; iq[i] = 0x1000000- j; 00225 } 00226 } else iq[i] = 0xffffff - j; 00227 } 00228 if(q0>0) { /* rare case: chance is 1 in 12 */ 00229 switch(q0) { 00230 case 1: 00231 iq[jz-1] &= 0x7fffff; break; 00232 case 2: 00233 iq[jz-1] &= 0x3fffff; break; 00234 } 00235 } 00236 if(ih==2) { 00237 z = one - z; 00238 if(carry!=0) z -= scalbn(one,q0); 00239 } 00240 } 00241 00242 /* check if recomputation is needed */ 00243 if(z==zero) { 00244 j = 0; 00245 for (i=jz-1;i>=jk;i--) j |= iq[i]; 00246 if(j==0) { /* need recomputation */ 00247 for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */ 00248 00249 for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */ 00250 f[jx+i] = (double) ipio2[jv+i]; 00251 for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; 00252 q[i] = fw; 00253 } 00254 jz += k; 00255 goto recompute; 00256 } 00257 } 00258 00259 /* chop off zero terms */ 00260 if(z==0.0) { 00261 jz -= 1; q0 -= 24; 00262 while(iq[jz]==0) { jz--; q0-=24;} 00263 } else { /* break z into 24-bit if necessary */ 00264 z = scalbn(z,-q0); 00265 if(z>=two24) { 00266 fw = (double)((int32_t)(twon24*z)); 00267 iq[jz] = (int32_t)(z-two24*fw); 00268 jz += 1; q0 += 24; 00269 iq[jz] = (int32_t) fw; 00270 } else iq[jz] = (int32_t) z ; 00271 } 00272 00273 /* convert integer "bit" chunk to floating-point value */ 00274 fw = scalbn(one,q0); 00275 for(i=jz;i>=0;i--) { 00276 q[i] = fw*(double)iq[i]; fw*=twon24; 00277 } 00278 00279 /* compute PIo2[0,...,jp]*q[jz,...,0] */ 00280 for(i=jz;i>=0;i--) { 00281 for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k]; 00282 fq[jz-i] = fw; 00283 } 00284 00285 /* compress fq[] into y[] */ 00286 switch(prec) { 00287 case 0: 00288 fw = 0.0; 00289 for (i=jz;i>=0;i--) fw += fq[i]; 00290 y[0] = (ih==0)? fw: -fw; 00291 break; 00292 case 1: 00293 case 2: 00294 fw = 0.0; 00295 for (i=jz;i>=0;i--) fw += fq[i]; 00296 y[0] = (ih==0)? fw: -fw; 00297 fw = fq[0]-fw; 00298 for (i=1;i<=jz;i++) fw += fq[i]; 00299 y[1] = (ih==0)? fw: -fw; 00300 break; 00301 case 3: /* painful */ 00302 for (i=jz;i>0;i--) { 00303 fw = fq[i-1]+fq[i]; 00304 fq[i] += fq[i-1]-fw; 00305 fq[i-1] = fw; 00306 } 00307 for (i=jz;i>1;i--) { 00308 fw = fq[i-1]+fq[i]; 00309 fq[i] += fq[i-1]-fw; 00310 fq[i-1] = fw; 00311 } 00312 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i]; 00313 if(ih==0) { 00314 y[0] = fq[0]; y[1] = fq[1]; y[2] = fw; 00315 } else { 00316 y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw; 00317 } 00318 } 00319 return n&7; 00320 }

Generated on Thu Nov 20 11:49:51 2008 for RTAI API by doxygen 1.3.8