base/math/e_log.c

Go to the documentation of this file.
00001 /* @(#)e_log.c 5.1 93/09/24 */ 00002 /* 00003 * ==================================================== 00004 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 00005 * 00006 * Developed at SunPro, a Sun Microsystems, Inc. business. 00007 * Permission to use, copy, modify, and distribute this 00008 * software is freely granted, provided that this notice 00009 * is preserved. 00010 * ==================================================== 00011 */ 00012 00013 #if defined(LIBM_SCCS) && !defined(lint) 00014 static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; 00015 #endif 00016 00017 /* __ieee754_log(x) 00018 * Return the logrithm of x 00019 * 00020 * Method : 00021 * 1. Argument Reduction: find k and f such that 00022 * x = 2^k * (1+f), 00023 * where sqrt(2)/2 < 1+f < sqrt(2) . 00024 * 00025 * 2. Approximation of log(1+f). 00026 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 00027 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 00028 * = 2s + s*R 00029 * We use a special Reme algorithm on [0,0.1716] to generate 00030 * a polynomial of degree 14 to approximate R The maximum error 00031 * of this polynomial approximation is bounded by 2**-58.45. In 00032 * other words, 00033 * 2 4 6 8 10 12 14 00034 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 00035 * (the values of Lg1 to Lg7 are listed in the program) 00036 * and 00037 * | 2 14 | -58.45 00038 * | Lg1*s +...+Lg7*s - R(z) | <= 2 00039 * | | 00040 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 00041 * In order to guarantee error in log below 1ulp, we compute log 00042 * by 00043 * log(1+f) = f - s*(f - R) (if f is not too large) 00044 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 00045 * 00046 * 3. Finally, log(x) = k*ln2 + log(1+f). 00047 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 00048 * Here ln2 is split into two floating point number: 00049 * ln2_hi + ln2_lo, 00050 * where n*ln2_hi is always exact for |n| < 2000. 00051 * 00052 * Special cases: 00053 * log(x) is NaN with signal if x < 0 (including -INF) ; 00054 * log(+INF) is +INF; log(0) is -INF with signal; 00055 * log(NaN) is that NaN with no signal. 00056 * 00057 * Accuracy: 00058 * according to an error analysis, the error is always less than 00059 * 1 ulp (unit in the last place). 00060 * 00061 * Constants: 00062 * The hexadecimal values are the intended ones for the following 00063 * constants. The decimal values may be used, provided that the 00064 * compiler will convert from decimal to binary accurately enough 00065 * to produce the hexadecimal values shown. 00066 */ 00067 00068 #include "math.h" 00069 #include "mathP.h" 00070 00071 #ifdef __STDC__ 00072 static const double 00073 #else 00074 static double 00075 #endif 00076 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ 00077 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ 00078 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */ 00079 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ 00080 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ 00081 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ 00082 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ 00083 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ 00084 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ 00085 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ 00086 00087 #ifdef __STDC__ 00088 static const double zero = 0.0; 00089 #else 00090 static double zero = 0.0; 00091 #endif 00092 00093 #ifdef __STDC__ 00094 double __ieee754_log(double x) 00095 #else 00096 double __ieee754_log(x) 00097 double x; 00098 #endif 00099 { 00100 double hfsq,f,s,z,R,w,t1,t2,dk; 00101 int32_t k,hx,i,j; 00102 u_int32_t lx; 00103 00104 EXTRACT_WORDS(hx,lx,x); 00105 00106 k=0; 00107 if (hx < 0x00100000) { /* x < 2**-1022 */ 00108 if (((hx&0x7fffffff)|lx)==0) 00109 return -two54/zero; /* log(+-0)=-inf */ 00110 if (hx<0) return (x-x)/zero; /* log(-#) = NaN */ 00111 k -= 54; x *= two54; /* subnormal number, scale up x */ 00112 GET_HIGH_WORD(hx,x); 00113 } 00114 if (hx >= 0x7ff00000) return x+x; 00115 k += (hx>>20)-1023; 00116 hx &= 0x000fffff; 00117 i = (hx+0x95f64)&0x100000; 00118 SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */ 00119 k += (i>>20); 00120 f = x-1.0; 00121 if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */ 00122 if(f==zero) {if(k==0) return zero; else {dk=(double)k; 00123 return dk*ln2_hi+dk*ln2_lo;} 00124 } 00125 R = f*f*(0.5-0.33333333333333333*f); 00126 if(k==0) return f-R; else {dk=(double)k; 00127 return dk*ln2_hi-((R-dk*ln2_lo)-f);} 00128 } 00129 s = f/(2.0+f); 00130 dk = (double)k; 00131 z = s*s; 00132 i = hx-0x6147a; 00133 w = z*z; 00134 j = 0x6b851-hx; 00135 t1= w*(Lg2+w*(Lg4+w*Lg6)); 00136 t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 00137 i |= j; 00138 R = t2+t1; 00139 if(i>0) { 00140 hfsq=0.5*f*f; 00141 if(k==0) return f-(hfsq-s*(hfsq+R)); else 00142 return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f); 00143 } else { 00144 if(k==0) return f-s*(f-R); else 00145 return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f); 00146 } 00147 }

Generated on Thu Nov 20 11:49:51 2008 for RTAI API by doxygen 1.3.8