E-Configuration

Rick Perley
What, and Why?

• A super-dense, compact configuration with maximum spacing ~ 250 meters.
 – Resolution ~2.0’ at 20cm, 4.5” at 7mm.
• Halfway between GBT and D-configuration resolution.
• Three times larger beam => 10 times higher surface brightness sensitivity than ‘D’-config.
• Provides faster, more accurate imaging than a tapered D-configuration.
A (Small) Part of Phase II

• Originally was a component of Phase I EVLA.
• Dropped due to budget cap and development/design issues.
• Retained within Phase II as a (minor) component of the expansion.
• Concept has generally been well supported as a potential stand-alone proposal.
Performance

- The following table shows 1-hour 1-σ performance.

<table>
<thead>
<tr>
<th>Band</th>
<th>Res’n</th>
<th>CPSS</th>
<th>Confusion</th>
<th>CBTS</th>
<th>LPSS</th>
<th>LBTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arcsec</td>
<td>µJy</td>
<td>µJy/beam</td>
<td>µK</td>
<td>mJy</td>
<td>mK</td>
</tr>
<tr>
<td>L</td>
<td>120</td>
<td>6.2</td>
<td>610</td>
<td>135</td>
<td>1.8</td>
<td>37</td>
</tr>
<tr>
<td>S</td>
<td>60</td>
<td>3.0</td>
<td>93</td>
<td>64</td>
<td>1.1</td>
<td>23</td>
</tr>
<tr>
<td>C</td>
<td>30</td>
<td>2.3</td>
<td>14</td>
<td>50</td>
<td>.85</td>
<td>18</td>
</tr>
<tr>
<td>X</td>
<td>19</td>
<td>2.8</td>
<td>4.0</td>
<td>60</td>
<td>.78</td>
<td>16</td>
</tr>
<tr>
<td>Ku</td>
<td>13</td>
<td>2.5</td>
<td>1.4</td>
<td>57</td>
<td>.71</td>
<td>15</td>
</tr>
<tr>
<td>K</td>
<td>9</td>
<td>3.2</td>
<td>.50</td>
<td>67</td>
<td>.85</td>
<td>18</td>
</tr>
<tr>
<td>Ka</td>
<td>6</td>
<td>3.5</td>
<td>.17</td>
<td>74</td>
<td>.78</td>
<td>16</td>
</tr>
<tr>
<td>Q</td>
<td>4.5</td>
<td>6.9</td>
<td>.082</td>
<td>140</td>
<td>1.1</td>
<td>24</td>
</tr>
</tbody>
</table>

CPSS: Continuum Point Source Sensitivity
CBTS: Continuum Brightness Temperature Sensitivity
LPSS: Line Point Source Sensitivity (1km/sec)
LBTS: Line Brightness Temperature Sensitivity
Science

- Large-Angle Low-Brightness Surveyor
- Commonly used in mosaic mode, often in conjunction with GBT, or other single dish.
- Quoted applications (from Phase II proposal):
 - Imaging S-Z in galaxy clusters.
 - HI and non-thermal imaging of nearby galaxies, Galactic chimneys, and shells.
 - Mapping of Zeeman splitting of HI, molecular, and RR lines.
 - Imaging comet emission, SNR, ISM, thermal emission lines
 - Imaging of diffuse synchrotron emission from particle acceleration sites throughout the universe.
Some Design Details

• Game is to get the antennas as close together as possible, but also to prevent excessive shadowing.
• Two configurations proposed.

Red: Existing Stations
Blue: New Stations

Blue: Existing plus E-config.
Red: Additional for E-30
UV-coverage

- Comparison of D with E: 1 hour at $\delta = 60$.
- More uniform coverage, more different spacings mean faster, better imaging.
Fidelity

- A much better imager than D-configuration, especially when combined with GBT data.
Cost, and Schedule

- Guy Sanzione has updated costs (2007) (in $K)

<table>
<thead>
<tr>
<th></th>
<th>Basic E</th>
<th>E-30 addit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering & Consulting</td>
<td>310</td>
<td>82</td>
</tr>
<tr>
<td>Track</td>
<td>1165</td>
<td>278</td>
</tr>
<tr>
<td>Earthwork</td>
<td>287</td>
<td>52</td>
</tr>
<tr>
<td>Foundation</td>
<td>2886</td>
<td>722</td>
</tr>
<tr>
<td>Power</td>
<td>197</td>
<td>62</td>
</tr>
<tr>
<td>Fiber</td>
<td>105</td>
<td>34</td>
</tr>
<tr>
<td>Taxes & Contingency</td>
<td>605</td>
<td>130</td>
</tr>
<tr>
<td>Management, Wages, Benefits</td>
<td>320</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>5880</td>
<td>1376</td>
</tr>
</tbody>
</table>
Some Closing Points

• Zero Technical Risk.
 – This is a ‘can’t fail’ project. It’s all about civil engineering.
 – Can be done in parallel with EVLA construction.

• The surveying and imaging capabilities are provided for all bands at once!
 – The major cost – feeds and receivers – are already there.

• Interferometry is the best way to get high-fidelity imaging.
 – Can’t compete with GBT’s brightness sensitivity, but can do far better in dynamic range, and in overall cost. There is broad support for this in the community.

• Many possible partners – some (e.g., Karl Menten) with money.

• May be a window of opportunity available now
 – Part of an EVLA development fund
 – Possible cost reductions with putative recession?