The EVLA: A North American Partnership

The EVLA Project on the Web
http://www.aoc.nrao.edu/evla/

10 January 2006 AAS EVLA Town Hall Meeting
New Science Impact of the EVLA Supercomputing Correlator

P. Dewdney
Herzberg Institute of Astrophysics
National Research Council Canada

M. P. Rupen
National Radio Astronomy Observatory
Key EVLA Processing Capabilities

- **Deep Imaging Polarization**
 - 8 GHz Bandwidth (dual polarization).
 - Full polarization processing.
 - Wide-field imaging.

- **Narrow spectral lines Wideband searches**
 - 16,000 channels at max. bandwidth (BW).
 - >10^5 channels at narrow BWs.
 - Spectral resolution to match any linewidth.
 - Spectral polarization (Zeeman Splitting).

- **Flexibility Many resources**
 - 8 tunable 2 GHz wide bands.
 - Each band - 16 tunable sub-bands.
 - Sub-band – independent spectral resolution
 - Simultaneous line and continuum.

- **High time resolution**
 - 1000 pulsar “phase bins”.
 - “Single-dish” data output to user instruments.
 - Very fast time sampling (20 µs).
Star-Forming Galaxies at High Redshift

- Enabled by enhanced sensitivity of EVLA.
- Complementary to ALMA & Spitzer.
- K-correction compensates for z-losses in the 45 GHz band.
- Resolution 50 mas. (200 pc @ z=10).
- Imaging: 1 arcsec over 30 arcmin @ 1.5 GHz.
- EVLA/ALMA gives complete galaxy SED’s:
 - 3 orders of magnitude of frequency,
 - Large range of redshift.

Arp220 SED scaled to high redshifts.
CO Surveys of High-z Star-Forming Galaxies

This is a struggle!

CO $J=3-2$

$Z = 6.42$

Peak $\sim 0.6\,\text{mJy}$

EVLA sensitivity (red line) in 8 hrs (1 σ).

- Detects ($J=1-0, 2-1, 3-2, 4-3$).
- More transitions at high z.
- Precise redshift not necessary in advance.
- Spectral resolution will match channel to linewidth.
- Other lines: HCN, HCO$^+$…

Spectral Line Sensitivity of the VLA

Arp 220 at $z = 8$, smoothed to 300 km/sec resolution
Setup for CO Z-Search

Sky Frequency Bands

<table>
<thead>
<tr>
<th>1-2</th>
<th>2-4</th>
<th>4-8</th>
<th>8-12</th>
<th>12-18</th>
<th>18-27</th>
<th>27-40</th>
<th>40-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>S</td>
<td>C</td>
<td>X</td>
<td>U</td>
<td>K</td>
<td>Ka</td>
<td>Q</td>
</tr>
</tbody>
</table>

- 40-50 GHz band provides lowest redshift.
- \(z = 1.4 \) to 1.9 for \(J=1-0 \).
- \(z = 3.8 \) to 4.8 for \(J=2-1 \).
- \(\Delta v \sim 5.0 \) km s\(^{-1} \) (1 MHz).
- 200 km-s\(^{-1} \) galaxy would occupy \(\sim 40 \) channels.

Interferometry

- High resolution imaging.
- Good spectral baselines.

Note: Sub-bands can be seamlessly joined across each observing bandwidth.
Magnetic Fields in Star-Forming Regions

- \(\sim 30 \) \(H^+ \) radio recomb. lines in one observation.
- “Stack” lines to improve sensitivity.
- \(H^+, \ He^+, \ C^+ \) recomb. lines.
- EVLA resolution provides images of:
 - gas density,
 - temperature,
 - metallicity,
 - B-fields (Zeeman).

- Sensitivity (12 hr, 5\(\sigma \)):
 - \(\Delta S_{\text{line}} \sim 0.1 \) mJy (stacked, integral)
 - \(\Delta B \sim 150 \) \(\mu \)Gauss.
- Orion, W3, Gal. Center …
Hundreds of Spectral Lines

- Nobeyama spectral scan.
- 414 lines (8 to 50 GHz)
- 38 species.
- Some likely to show Zeeman splitting.
- “D-array” EVLA
 - Resolution,
 - Spectral baseline stability
 - Imaging.
- EVLA can observe 8 GHz at one time – an average of 80 lines --- at 10 km/s velocity res’n (30 GHz)
- EVLA Correlator can “target” many (~60) lines a once.