

Massive Star Formation

- Solar-mass star formation paradigm: accretion disk
 Still not critically tested
- Massive star formation:
 No paradigm yet
 Coalescence possible

HST: Orion Nebula "Proplyd"

IR & Radio

• Orion-I (IRc2):

Dominant massive star in KL region

• Obscuration problem:

 $A_{\rm v} \sim 100$'s to 1000's

 $A_{IR} \sim 10$'s to 100's

Need radio waves to see inside

Menten & Reid (1995)

Orion-I

• VLA continuum image

43 GHz (7mm)

40 mas = 20 AU resolution

• VLBA line image

SiO masers

0.5 mas = 0.25 AU resolution

Greenhill, Reid, Menten & Chandler

Disk Geometry

Massive star protostellar "disk": resolved by VLA Seeing material expelled from disk (rotating outflow)

EVLA Contributions

- EVLA-I: increased sensitivity (x 10)
 - Current image barely detected; increased sensitivity will allow studying details (eg, disk thickness, disk truncation, jet formation, etc.)
 - Move from studying nearest source to many others, eg, in Cep A, NGC 6334, W3, etc.
- EVLA-II: increased angular resolution (x 10) Resolve internal structures: eg, gaps, density distribution

Galactic Center

Infrared 1 light-year

VLA: 1 cm (Zhao)

VLT / NACO 1.6-3.5 microns

Radio/IR Astrometry

Grid of stars visible in IR and Radio

Red Giant stars with SiO masers:

Radio frame "perfect"

Reid & Menten (2003)

Where is Sgr A*?

S2 Sgr A* position

Menten, Reid, Eckart & Genzel (1997)

Reid et al (2003)

Stellar Orbits

- Limited by distortions across IR frame
 - Requires grid of reference stars to remove systematic errors
 - Need < 1 mas accuracy
- Deviation from elliptical orbits give
 Extended dark matter
 Stellar remnant graveyard
 - Effects of BH spin (precession)
- G.C. distance: R_o (<1% unc.)
 Galaxy rotation speed (<1% unc.)

Recalibrate EG distance scale

Credit: Ghez & Tanner

EVLA Contributions

• EVLA-I: Super correlator (x 12 speed-up)

Observe all stars (+/- 400 km/s) simultaneously; currently requires >12 bands observed sequentially Increased sensitivity => more stars, <1 mas positions

• EVLA-II: increased angular resolution (x 10)
Increase astrometric accuracy from <1 mas to <0.1 mas