

EVLA Design Driven By Four Themes

Magnetic Universe

Measure the strength and topology of the cosmic magnetic field.

Transient Universe

Follow the rapid evolution of energetic phenomena.

Obscured Universe

Image young stars and massive black holes in dust enshrouded environments.

Evolving Universe

Study the formation and evolution of stars, galaxies and AGN.

Radio is High Energy Astrophysics

- Physics at the extremes
 - AGN, GRBs, SNe, clusters, PWN, SNRs, PSRs, SGRs, XRBs
- Radio synchrotron = HE electrons

SGR1806-20 hyper-flare of December 27, 2004.

- geometry and magnetic field
- expansion and proper motion
- distance scale

Strong Gravity and Black Hole Accretion

Galactic center is rich in massive stars and hence NS and BH remnants

- 10^2 - 10^3 PSRs with P_{orbit} <100 yr

Current GC PSR searches are insensitive due to turbulent ionized gas

(Red=radio; blue=X-ray; Green=NIR)

Strong Gravity and Black Hole Accretion

At 22 GHz: $rms(50 ksec) = 1 \mu Jy$

 $\vartheta_{\text{scat}} = 2 \text{ mas}; \ t_{\text{scat}} = 1.3 \text{ msec}$

VLA beam = 100 mas; FOV = $\pm 60^{\circ}$

Detect 2-15 PSRs within 4000 AU of SgrA*

EVLA capabilities

- 10-fold increase in sensitivity (rms=1 uJy)
- 10⁶: 1 image fidelity (PSR: SgrA*)
- 10's mas position astrometry
- Millisecond pulsar timing

Results from long-term timing and astrometry

- Measure mass and <u>spin</u> of SMBH
 - Keplerian orbits (M_{BH})
 - Relativistic spin-orbital coupling (Ω)
 - Complements Con X Fe-line florescence
- Tests of GR in ultra-strong regime
 - And alternate theories of gravity
- Probes of the magneto-ionic accretion environment around a black hole

The Progenitors of Type Ia Supernova

Deep ignorance about SN Ia <u>progenitor</u> and <u>explosion mechanism</u>

- high spatial and spectral X-ray observations combined w/ theory
- ✓ detect progenitor circumstellar medium

EVLA capabilities

- order of magnitude (20X) increase in instantaneous sensitivity
- continuous frequency coverage
- real-time dynamic scheduling

100-fold increase in SN Ia event rate

Cosmology and Compton-thick AGN

EVLA capabilities

- observe systemic and satellite lines over 1000's km/s
- identify maser regions at mas resolution

Ho and Dark Energy probe

Direct geometric distances determined from nuclear masers (e.g. NGC 4258)

- maser amplification depends on nuclear gas column density $(L_{H,O} \propto N_H^3)$
- Compton-thick galaxies identified by hard Xray imagers, e.g. NuSTAR, Swift-BAT

Gamma-Ray Bursts: Black Hole Birth

EVLA capabilities

- order of magnitude (20X) increase in instantaneous sensitivity
- continuous frequency coverage
- real-time dynamic scheduling

Radio observations of GRB afterglows are key but are currently severely sensitivity limited

- Constrains the <u>total</u> energy released by central engine independent of θ_{iet} , θ_{view} , or Γ

Probes density structure of circumburst medium

Breaks optical/X-ray degeneracy

The EVLA: A North American Partnership

National Research Council Canada

Conseil national de recherches Canada

The EVLA Project on the Web http://www.aoc.nrao.edu/evla/