

EVLA Monitor and Control

Communications
Infrastructure

Version 1.0.2

Table of Contents

1 Executive Summary ... 1
2 Introduction.. 1
3 Characterization of Communications .. 1

3.1 MIBs & Collections of MIBs.. 2
3.1.1 MIBs, Data In... 3
3.1.2 MIBS, Data Out ... 3
3.1.3 MIBs, Data In, Discussion ... 4

3.1.3.1 Set commands Received Via the Service Port .. 4
3.1.3.2 Get Commands Received Via the Service Port .. 5
3.1.3.3 Code Loading.. 6
3.1.3.4 XML Device Configuration Files ... 6

3.1.4 MIBs, Data Out, Discussion .. 6
3.1.4.1 Responses to Set commands when the -v (verbose) option is set (MIB Service Port)6
3.1.4.2 Responses to Get Commands (MIB Service Port).. 6
3.1.4.3 Monitor Data from the MIB Data Port ... 7

3.1.4.3.1 Monitor Data To the Archive... 7
3.1.4.3.2 Monitor Data to Software Processes and Operator Screens (MIB Data Port) 9

3.1.4.4 Alarms and Alerts (MIB Data Port).. 9
3.1.4.5 MIB Error Messages, MIB Logging Messages (MIB Data Port) 9

3.2 The Control and Monitor Processor (CMP).. 9
3.3 The Observation Executor and Antenna Objects.. 11
3.4 Correlator and Correlator Backend Configuration ... 12
3.5 Antsol/Telcal... 14
3.6 Operator Screens... 18

4 Deployment Scenarios ... 18
5 Additional Considerations ... 21

5.1 Extension of the EVLA Monitor and Control System to EVLA Phase II 21
5.2 Moving EVLA Operations from the VLA Site to the AOC in Socorro 21
5.3 Extending the EVLA M & C System to Include Monitor and Control of VLBA Antennas.. 21
5.4 Transitioning from the VLA Control System to the EVLA Control System 21

6 Conclusions & Recommendation .. 22
6.1 Objects Everywhere Is Not Possible... 22
6.2 Best Fit .. 24
6.3 Lack of Pervasiveness & Increased Complexity .. 24
6.4 Suitability.. 25
6.5 Requirements of the Transition Plan for Control of the Hybrid Array................................... 26
6.6 Disadvantages of Messaging... 27
6.7 An Aside, The Use of UDP and Multicasts as Message Transports....................................... 27
6.8 Recommendation .. 30

 i

Version/Revision Information

Revision Date Author(s) Description of Changes

1.0.0 January 31, 2005 Bill Sahr Original version

1.0.1 February 11,2005 Bill Sahr Revisions based on initial,

limited circulation.

1.0.2 February 16, 2005 Bill Sahr Section on UDP and multicasts

added.

 ii

1 Executive Summary
This document is the report of the EVLA Distributed Object Communications Team. The team
was formed on May 14, 2004, and concluded its work early in September 2004. The purpose of the
team was to characterize and analyze the nature of the monitor and control information within the
EVLA Monitor and Control System, and to recommend an approach to the distribution of this
information within the system. The bulk of this document is devoted to the attempt to characterize
the information to be communicated. The data inputs and outputs for a collection of core
components are examined. These components include the controllers for subsystems in both
EVLA and VLA antennas (MIBs and the CMP), the Observation Executor and Antennas as
software entities (Antenna Objects), the Correlator and the Correlator backend, Antsol/Telcal, and
Operator Screens. A possible deployment scenario for the EVLA is reviewed. At the conclusion of
the characterization of the information, two possible approaches to the distribution of the
information are examined – distributed objects and messaging. An analysis of aspects of the
hardware architecture of the EVLA, of the nature of the information to be distributed, and of the
requirements of the plan for making the transition from the VLA to the EVLA leads to the
conclusion that a message-based approach is best suited to the needs of the EVLA Monitor and
Control System.

2 Introduction
On May 14, 2004 a team was formed to consider the means by which distributed objects within the
EVLA software system would communicate. The team consisted of 6 members drawn from the
staff of the EVLA Computing Division (ECD). The team members were:

• Chunai Cai (Executor software)
• Rich Moeser (Java expertise, User Interfaces)
• Kevin Ryan (Antenna Monitor and Control)
• Bill Sahr (EVLA M&C Group Leader)
• Boyd Waters (e2e Software, Deployment Scenarios)
• Pete Whiteis (MIB Software)

Team members were chosen on the basis of their nominal areas of responsibility and expertise
(given in parenthesis). The charge to the team was to characterize the data and information that is
to be distributed within the EVLA Monitor and Control System, and to recommend an approach to
communications that will satisfy the needs of the system.

3 Characterization of Communications
The team began by identifying processing “loci” that capture the essential elements of the EVLA
Monitor and Control system. The following list was adopted as the focus for characterization of
communication within the monitor and control system:

• MIBs & a collection of MIBs sufficient to characterize an antenna
• the CMP
• the Observation Executor
• Antennas, as software entities

 1

• Correlator and Correlator Backend configuration
• Antsol/Telcal
• Operator Screens
• Deployment Scenarios

This list was not meant to be exhaustive or final, but it was agreed that an examination of the
communication needs of these elements should capture both the bulk and the essence of
communication requirements within the monitor and control system.

3.1 MIBs & Collections of MIBs
The figure given below is a diagram of the MIB software.

Cm d line

Cmd line

Get or Set
cmds

Deferred
Set cm ds

Deferred
Set cmds

UDP port N
Cmd Set Outputs

UDP

Archive Screen Observing Alerts

UDP port 7000 Parser

M odule-
specific
Logical Points

M IB
Fram ework
Logical Points

H/W
M odules

H/W ID
EEPROM

M IB Framework running in RAM

Operating
System
Services

Tim e-
deferred Set
Com mands

Direct
reads of
DB tables

SPI

UDP port N
Parsing error msgs

TCP port 23

SPI,
etc

Set cmnds

Set & Get
cmnds

Get or Set
cm ds

Service
Port

Server

Service
Port

Executors

Telnet
session
or shell

Data Port

MIB Software Diagram

The internal structure of the MIB software is not of interest to the purposes of this document. The
concern here is with the ports. The MIB has two ports – a service port and a data port. The service
port is bidirectional, and there are two paths by which a connection may be established – a UDP-
based connection that is used by the device browser and by software processes that perform
operational activities, and a TCP/IP-based Telnet port that is intended for direct human interaction
with the MIB and MIB-controlled devices. The same command and response syntax is used for

 2

both types of connection to the service port. Telnet sessions are limited to two simultaneous
sessions per MIB.

Set and get commands are received via the service port of the MIB. Set commands are used to set
the values of control points, i.e., commands to be acted upon by the hardware device(s) controlled
by the MIB, and to set the value of monitor point attributes, such as the value of the high alarm and
low alarm attributes that determine when a monitor point is considered to be out-of-range. Get
commands are used to obtain the values of monitor points, and to obtain descriptions of the
available monitor points and control points.

The data port of the MIB is a unidirectional port – output only. Monitor data, alarms and alerts,
error messages, and logging messages are sent via the data port as multicasts. Three monitor data
streams will be implemented (as multicast groups) on the data port – one for archiving, one for
screens, and one for software processes performing operational activities.

3.1.1 MIBs, Data In
• Set commands received via the service port

o from software processes
� scan configurations
� position updates

o directly from operator screens
o from the device browser
o from command line interface (CLI) based telnet sessions

� telnet sessions are limited to two per MIB
• Get commands received via the service port

o from software processes for the purpose of obtaining a coherent,
current picture of subsystem state and status

o from operator screens
o from the device browser
o from CLI-based telnet sessions

• code loading, ~ 1 Mbyte per image (infrequent)

• XML device configuration files (~ 5Kbytes to 20Kbytes, infrequent)

3.1.2 MIBS, Data Out
• responses to set commands when the -v (verbose) option is set (service port)

o to software processes
o to operator screens
o to the device browser
o to telnet sessions

• responses to get commands (MIB service port)
o used to obtain monitor data on request, and to obtain a

a description of available control points and monitor points
and their attributes

o to software processes for the purpose of obtaining a picture
of the subsystem state and status

o to operator screens

 3

o to the device browser
o to telnet sessions

• monitor data from the MIB data port

o periodic multicast
o average size of a monitor point is ~ 60 bytes
o average number of monitor points per UDP packet is ~ 6.8
o to the archive
o to software processes such as the Executor and to support

functionality such as flagging
o to operator screens

• alarms and alerts (MIB data port)

o event driven multicast messages
o to software processes
o to operator screens
o to the device browser
o to telnet sessions
o to an archive
o for Checker functionality
o for Flagging functionality

• error messages, logging messages (MIB data port)

o event driven multicast messages
o may also be periodic if message generation embedded in a periodic task
o generated by MIB processes
o current maximum length is < 300 bytes Possible future enhancements may

increase the maximum size to the payload of one Ethernet packet, 1280 bytes.
o to software processes
o to operator screens
o to the device browser
o to telnet sessions
o to logging tasks

3.1.3 MIBs, Data In, Discussion

3.1.3.1 Set commands Received Via the Service Port
While it is not possible to estimate the exact frequency with which set commands will be sent to the
MIBs (will vary with the nature of the observation being conducted), it is known that the frequency
will not be high. The highest rate of set command generation will occur in software processes that
are not tied to human rates of interaction with the system. Specifically, the Executor/Antenna
software that is responsible for the conduct of an observation. For normal observing, the peak burst
rate will occur at scan setup time, with each MIB getting a few (< 10) configuration commands
from a software process. Once a scan has been configured, the rate of commands going out to the
MIBs is low. For the test antenna, the update rate for antenna position commands and the LO

 4

system is only once every 10 seconds. This update rate will be insufficient for the New Mexico
Array (EVLA Phase II), but for that case the update rate will still be very modest – once every 5
seconds. Scans typically last at least several minutes, so the rate of new scan setups will also be
low. (Note, Chapter 9 of the EVLA Project Book states that the antenna position must be updated
every 50 ms to maintain the desired level of pointing accuracy, but this rate is the rate at which the
MIB sends commands to the ACU, not the rate at which the MIB receives set commands.)

The most extreme case of on-the-fly mosaicing (OTFM) will represent the highest rate of set
command generation. For this case, the rate of pointing command updates from the Executor or its
associated Antenna Objects will be 10Hz, i.e., a set command for azimuth and a set command for
elevation to each ACU/FRM MIB once every 100 ms.

Set commands coming from operator screens, the device browser, and telnet sessions are all tied to
the rate at which a human can interact with the system.

The data type for a set command is an ASCII string. The string length will be tens or hundreds of
bytes (commands can be grouped).

3.1.3.2 Get Commands Received Via the Service Port
Get commands from software processes not associated with human interactions with the system are
likely to be very infrequent. Currently, the expectation is that software processes will issue “get”
commands to MIBs only when those software processes are initializing. After the current state of a
MIB has been initially determined, these software processes will maintain their picture of the state
of a subsystem by subscribing to multicasts from the MIB data port for monitor data, alarms and
alerts, error messages and logging messages. Similar logic applies to operator screens.

The device browser is a general-purpose application intended to provide low-level access to all
devices in the system. As the EVLA software matures, its chief use will be the detailed
examination of device state for the purpose of troubleshooting. The focus here will be on its
behavior with respect to MIB-connected devices. Unlike software processes that perform
operational activities and are not tied to human interactions with the system, the device browser
does poll the MIBs. It (the device browser) communicates with MIBs via the service port and does
not subscribe to the monitor point multicasts emitted by the MIB data port. The reasons for this
difference in behavior are bound to the intended applications of the device browser.

Initially, the device browser will send a “get *.*.*” command to the connected MIB to obtain a list
of all devices, all monitor and all control points for each device, and all attributes of all monitor and
control points. After the initial get command, the device browser will poll the MIB, periodically
sending get commands to obtain the values of monitor points. The default polling rate is once per
second (1Hz). The user selectable set of polling rates is once every 5, 25, 100, 250, 500, 1000,
2000, and 5000 milliseconds (200 Hz, 40 Hz, 10Hz, 4Hz, 2Hz, 1Hz, 0.5Hz, 0.2Hz)

The rate of get commands for telnet sessions is governed by the rate at which a human can interact
with the system.

The data type for a get command is an ASCII string. The string length will be tens to hundreds of
bytes (command grouping).

 5

3.1.3.3 Code Loading
Code loading refers to the downloading, over Ethernet, of new executable images to the MIBs.
This function will be performed on only an occasional basis, when updates to MIB software are
needed, and is not a part of normal operation of the array. Software to perform code loading has
already been implemented. Images are transferred as S-records. This function is properly
considered a special case and is excluded from further consideration of the appropriate
infrastructure for communication among the distributed processes that will constitute the EVLA
Monitor and Control system.

3.1.3.4 XML Device Configuration Files
Device configuration files are ASCII files, in an XML format, that are used to define the publicly
exposed monitor and control points associated with devices controlled by MIBs. These files are
normally static in nature. A new XML device configuration is downloaded only when the monitor
and/or control points for a device are to be changed. As with Code Loading, this function is a
special case and will be excluded from further consideration with respect to the purpose of this
document.

3.1.4 MIBs, Data Out, Discussion

3.1.4.1 Responses to Set commands when the -v (verbose) option is set (MIB Service Port)
The output generated is quite small. If the set command is successful, a message will be generated
that will be either a count of the matching monitor point or control point attributes found, or if used
in combination with a time-deferred command, an indication that the time-deferred command was
successfully queued and the command sequence number assigned to the command. If the set
command fails, some type of informative message will be sent.

The data type for the responses is ASCII strings, and the string length is tens or hundreds of bytes.

3.1.4.2 Responses to Get Commands (MIB Service Port)
Queries from software processes not associated with human interactions with the system would be
infrequent. As mentioned previously, such software processes will explicitly query MIBs only
when they are initializing. For routine maintenance of state and status, it is expected that these
software processes will subscribe to the MIB multicasts of monitor data, alarms, alerts, and error
messages. Operator screens will also maintain their view of subsystem state by subscribing to
multicasts.

The device browser will probably generate the highest level of responses to get commands. As
mentioned in the discussion of data into the MIBs, the device browser does initially send a “get
..*” to the selected MIB, and subsequently does poll the MIBs for monitor and control point
values using get commands. (Please recall that the device browser polls a MIB via the service port.
It does not use the data port multicasts.) The response length for a “get *.*.*” command ranges
from a few hundreds of bytes for simple devices up to tens of kilobytes for complex devices. The
response length for the subsequent get commands varies from less than 100 bytes for a simple
device to a few kilobytes for complex devices. As previously mentioned, the default polling rate of
the device browser is once per second (1Hz). The entire set of user selectable set of polling rates is
once every 5, 25, 100, 250, 500, 1000, 2000, and 5000 milliseconds (200 Hz, 40 Hz, 10Hz, 4Hz,
2Hz, 1Hz, 0.5Hz, 0.2Hz)

 6

The rate of responses to get commands issued by telnet sessions should be quite low since the
commands are issued by humans using a command line interface.

In all cases, the responses to get commands are ASCII strings, using an XML format. The largest
possible response is the response to a “get *.*.*” command, i.e., a request that the MIB in question
send a description of all devices, all monitor and control points for each device, and all attributes of
each monitor and control point. The largest known response (as of Nov 2004) is the response of
the M301 to a “get *.*.*”. The length of that response is approximately 39 Kbytes. Issuance of a
“get *.*.*” command is a relatively infrequent occurrence. Typically, it would be done by the
device browser or some other user interface screen or process only when it first connects to a MIB.
A more typical response length would be hundreds of bytes or a few (<10) kilobytes.

3.1.4.3 Monitor Data from the MIB Data Port
Monitor data is delivered as ASCII strings, in XML format. The maximum length of a payload of
monitor data would be represented by a packet containing multiple monitor points. Monitor data
packets are transmitted as UDP datagrams and are constrained in size to avoid fragmentation. The
maximum allowed payload is 1280 bytes.

3.1.4.3.1 Monitor Data To the Archive
Monitor Data Per Antenna
Since the exact complement of MIBs and the number of monitor points per MIB was not precisely
known at the time of the team meetings, a statistical approach was used to characterize the monitor
data traffic from an antenna.

The MIBs in an antenna were subdivided into three types - complex, simple, and monitor only.
The current tally of monitor points (MPs) and control points (CPs) for the modules developed as of
20-Jul-2004 was then used to estimate the number of MPs and CPs to assign to each type of MIB.

Number of MPs & CPs per MIB-controlled device as of 20-Jul-2004

Device # MPs #CPs
ACU 92 12
D30x 13 2
L301 17 5
L302 16 10
L304 11 1
L305 11 1
L353 18 3
M301 98 22
P301 21 1
T304 13 16

 7

Number of MPs & CPs assigned to each MIB type

MIB type # of MPs # of CPs
complex 125 25
 simple 50 10
monitor only 25 0

These estimates for the number of monitor and control points for each type of MIB did not seem to
be at too great a variance with the tally of MPs and CPs for the modules for which software had
already been developed.

Next, the number of MIBs of each type that will be found in an antenna was estimated. There will
be approximately 34 MIBs per antenna. The number of MIBs per type was estimated as 8
complex, 18 simple, and 8 monitor only. The number of complex MIBs was an allowance of 2
complex MIBs per IF, with 4 IFs per antenna. The number of monitor only MIBs approximated the
number of power supplies expected for an antenna, and the remaining number was allocated to
simple MIBs.

Simple arithmetic, laid out in the tables given below, gives a result of 2100 MPs/antenna and 380

CPs/antenna.

 task that archives monitor data had been running for some months. That task was metered to
er

of the numbers needed to estimate the amount of monitor data traffic per antenna:

MIB type # MPs # MIBs Total MPs MIB type #CPs # MIBs Total CPs
complex 125 8 1000 complex 25 8 200
simple 50 18 900 simple 10 18 180
monitor only 25 8 200 monitor only 0 8 0

2100 380

A
determine the average size of a monitor point. The figure obtained was a bit less than 60 bytes p
monitor point.

ne now has all O

antenna
KbytesbytesbytesMPs

antennaMPantenna
123000,126602100 ≅=×

For 27 antennas, the total data volume for a dump of all monitor points from all antennas would be:

Mbytesbytesbytesantennas 24.3000,402,3000,12627 ≅=×
antenna

For the VLA, the average rate at which monitor data is archived is once every 15 minutes. If this
same rate were to be used for the EVLA, then the average data rate to the archive would be:

sec
69.3780,3min1

secsec60min15

So, for monitor data to the archive

000,402,3 Kbytesbytesbytes
≅=×

, given the above listed assumptions, the data rate is relatively
low.

 8

3.1.4.3.2 Monitor Data to Software Processes and Operator Screens (MIB Data Port)
The expectation is that software processes such as the executor and functionality such as flagging

e
 the

ly variable. The system may need to see values for
te of

 to flag abnormal operating states that may require correction,
e primary, but not exclusive source of alarms and

 subscribe to the multicast group to

 a

cating that the software process itself has
essages originating

s by subscribing to the

ontrol System will monitor and control
 chasis), with one

ne modules. The processor that hosts the IP

A
ed

will operate by subscribing to a multicast group or groups to obtain monitor data. Of necessity, th
data stream(s) involved will be separate and distinct from the multicast data stream used by
archive task because the rate at which monitor point values are sent to the archive task is too low to
satisfy the needs of the executor, flagging, etc.

Within each monitor point data stream (archive, observing, and screens) the rate at which a
particular monitor point value is multicast can be varied on a per monitor point basis. The rate
from monitor point to monitor point will be high
total power every few milliseconds, az & el values from the ACU may be needed only at a ra
1Hz. Voltage reading from power supplies may be needed very infrequently or not at all until a
power supply enters an alarm state.

3.1.4.4 Alarms and Alerts (MIB Data Port)
Alarms and alerts are messages used
and could affect data quality. The MIBs will be th
alerts. Alarms and alerts will be multicast. Interested parties
receive these messages. Alarms and alerts are events, or event-driven. They are not periodic in
nature. The volume of traffic generated by alarms and alerts is dependent upon system state.
Alarms and alerts, as output by the MIBs, are ASCII strings, in an XML format. Each alarm or
alert message contains information for only one device. An alert message is sent when a device
enters an alert state and when a device exits an alert state. The alert message is not repeated on
periodic basis while the device is in the alert state. Optionally, the rate at which monitor data is
multicast may increase while a device is in the alert state.

3.1.4.5 MIB Error Messages, MIB Logging Messages (MIB Data Port)
Error messages are messages from software processes indi
entered an abnormal state. For the MIBs, logging messages are informational m
in software processes that are used as milestone markers and for debugging.

For the MIBs, error and logging messages use the same implementation. Both are event driven, but
may exhibit periodic characteristics if the message generation is embedded in a periodic task. Error
and logging messages are multicast. Interested clients receive these message
appropriate multicast group. The messages are ASCII strings. As currently implemented error and
logging messages are ASCII strings, less than 300 bytes in length. Error and logging messages do
not currently use an XML format. A possible XML format for error and logging messages has
been defined. If implemented, error and logging messages will be constrained to fit within one
Ethernet packet, giving a maximum length of 1280 bytes.

3.2 The Control and Monitor Processor (CMP)
The CMP is the means by which the EVLA Monitor and C
VLA antennas. Physically, it consists of two processor boards (in a VME
processor utilizing four Industry Pack (IP) mezzani
modules connects to one of the two available ports on the VLA Serial Line Controller (SLC). This
connection gives the CMP access to the entire VLA monitor data stream coming from all VL
antennas, and provides a means to send commands to the VLA antennas. The processor connect

 9

directly to the SLC is a classic, hard real-time system running the VxWorks operating system. The
second processor presents the interface of the CMP. It converts VLA-format monitor data to
EVLA-format monitor data, EVLA-format antenna commands to VLA-format antenna commands,
and presents a set of VLA antenna devices to the EVLA monitor and control system.

Communications traffic for the CMP has been characterized as follows:

Commands from the Observation Executor

• Initial antenna configuration at the start of an observation – tens to hundreds of bytes per

 producing tens of bytes of position data per VLA antenna, at a rate of 10Hz.

Comm

• ional – on the order of minutes – chiefly for administrative purposes, at
hich a human can interact with the system

Comm

• mands sent to a

Com

Monito he exact method is as yet undecided. Possibly polling or
sinks for VLA antenna monitor data

the rate at which new data is available. For most VLA monitor points this rate is
te

ate of

•

 “monitor word display”. The monitor word display

es
ot run
ems.

Monito

VLA antenna

• During an observation, within scans – position & LO settings updates. Normally, 10’s of
bytes per VLA antenna, once every 10 seconds. Worst case – the most extreme case of
OTF mosaicing

• During an observation, scan changes – probably not more than a few tens of bytes of data
per VLA antenna

ands from Operator Screens

Minimal and occas
rates set by the speed with w

ands from the device browser or equivalent

The worst case would be the same polling rates as described for get com
MIB by the device browser.

mands to the CMP will be delivered as ASCII strings.

r data from VLA antennas. T
multicast data streams as for MIB-controlled devices. Data
would include:

• Software processes such as the Executor, and those processes involved in the checker and
flagging functionality. If polling is used, it would make no sense to poll at a rate that
exceeds
0.1 Hz. The synch detector values and round trip phase measurements are available at a ra
of 1 Hz. ACU status is available at a rate of 5 Hz, and ACU position is available at a r
10 Hz.

Operator Screens. Data rates, per screen, are anticipated to be in the range of hundreds to
thousands of bytes per second.

• Low-level screens – device browser screens or the equivalent thereof. Either a scenario
similar to the MIB responses to get commands generated by the device browser, or data
rates similar or equal to the VLA
transfers one monitor word to the screen every waveguide cycle, with a monitor word
occupying approximately 20 bytes. Approximating the waveguide cycle rate as 20Hz giv
a data transfer rate of approximately 400 bytes/second. The monitor word display is n
during normal observing or as a part of normal operations. It is used to diagnose probl

r data from the CMP will be delivered as ASCII strings using an XML format.

 10

3.3 Th
The co

he diagram
given below is a sketch of some of those relationships as embodied in the test antenna software

n of the production version of the Executor

 come and

ct in each Array.

e Observation Executor and Antenna Objects
mmunication requirements among the components of the (Observation) Executor and

between the Executor and antennas depend upon the relationship of the components. T

developed by Barry Clark. Since the details of the desig
are still being settled, Barry’s design will be used here as a proxy for the final version.

The diagram indicates that the Executor uses a single process, multithreaded model, with all of the
components sharing the same address space. Very briefly, the Executor instantiates 28
AntennaPhysical objects. These objects are persistent and represent the actual antennas in the
physical array. Their lifetime is the same as the lifetime of the Executor. Array objects
go. These objects represent the first level of subarraying. The AntennaPhysical objects assigned to
an Array represent the actual antennas that are associated with a particular observation and control
script. The control script cannot move antennas among Arrays. A control script can create
subarrays within an Array. This capability represents a second level of subarraying, under the
control of the observer. An Array object may, therefore, contain one or more Subarray objects.
Correlator configuration is handled at the level of the Subarray objects. Correlator delay models
are generated at the level of AntennaPhysical.

Each Array object has 28 Antenna Configuration or Antenna data objects that are mapped, as
disjoint sets, into the one or more Subarray objects contained in the Array objects. In the diagram
given below, since each Array is shown with only one Subarray all 28 Antenna Configuration
objects are allocated to the single Subarray obje

Observation Executor

 11

Antenna Configuration objects are mapped to AntennaPhysical objects or to null pointers if a
particular antenna has not been assigned to the Array in question. Cloning an Antenna
Configuration object in the appropriate AntennaPhysical object specifies the desired state of an
antenna. In the current implementation of the Executor, the AntennaPhysical objects issue
commands directly to the EVLA MIBs to configure an antenna for an observation.

One important aspect of the diagram of the Executor is the relationship of CALC to those
components needing its results. CALC produces both pointing angles and delays. It is called by
the Antenna Configuration objects to produce an initial set of three pointing angles and delays, and
by the AntennaPhysical objects to obtain current pointing angles and delays. The rate at which
results are needed from CALC for the most extreme case of OTF mosaicing (OTFM) is a driver for
the architecture of the Executor. Benchmarks show that the EVLA control system host computer
cannot currently execute CALC quickly enough to supply results for 27 antennas at the rate needed
for the worst case of OTFM. There is a need, therefore, to optimize the execution time of CALC.

The major overhead for CALC is incurred when it is passed a new timestamp. Successive calls for
different antennas that use the same timestamp execute much more quickly. The difference in
processing time can be as much as 90%. However, successive calls achieve this higher level of
efficiency only if CALC is not allowed to terminate execution between the first call with a new
timestamp and successive calls that contain the same timestamp as the first. CALC, therefore, lives
in a persistent execution space.

BA shows that when CALC is implemented as a server and called remotely
 spends as much as 20% of its time on communications overhead. To minimize communications

ll.

ips
ss

mands
r OTF

osition

s

nt

or a 32-station correlator there will be 128 station boards and 160

Experience with the VL
it
overhead CALC is run in the same address space as the Executor and is treated as a function ca

While this brief description glosses over quite a number of issues, it does describe the relationsh
among the components of the Executor. Since the entire set of components share the same addre
space the major issue with respect to communication among distributed processes is the com
emitted by the AntennaPhysical objects. The driver here is still the requirements fo
mosaicing. For the most extreme case of OTFM, the AntennaPhysical objects must issue p
updates to the ACU and polynomials to the correlator at the rate of 10 Hz.

3.4 Correlator and Correlator Backend Configuration
The interface to the correlator and the correlator backend will be a software entity known as the
Virtual Correlator Interface (VCI). The figure given below is a diagram of the architecture of the
VCI. Briefly, the EVLA Monitor and Control System will send configuration requests to and
receive status, error, alarm and alert information from an interface that will be hosted by the Master
Correlator Control Computer (MCCC). The VCI transforms the received configuration request
into requests appropriate to the components of the correlator – station boards, baseline boards,
phasing boards (not shown), and the correlator backend. Configuration messages will then be se
to the correlator module interface boards (CMIBs) located on each correlator board, and to the
correlator backend end (CBE). F
baseline boards. The correlator backend will be a cluster, currently estimated to contain 64
processors. The EVLA Monitor and Control system need not address the correlator boards or CBE
processors individually. That task is handled by the VCI.

 12

CMIB Baseline
Board

Correlator
Backend

CMIB Station
Board

Master Correlator
Control Computer

MCCC

VCI host

Con
fig

ur
ati

on

Configuration

Configuration

St
atu

s

Status

Status

EVLA M&C

Configuration

Status, Alerts

Correlator

Virtual Correlator Interface

he VCI is concerned only with monitor and control. Astronomical data and meta-data relating to
an observation are not transferred over the VCI.

The VCI messages to be used for correlator configuration have not been sufficiently defined at this
point in time to enumerate the message lengths or rates of message delivery. It is know that VCI
messages will use an XML format.

Some work has also been done on configuration messages for the correlator backend (CBE).
Current thinking is that CBE configuration will be specified using an XML format. The CBE
prototype is currently configured in this manner. The use of XML to specify a CBE configuration
for 27 antennas, 8 basebands, and 16 subbands will result in a file size of hundreds of kilobytes.

The VCI is being designed and developed by Sonja Vrcic of the Dominion Radio Astrophysical
Observatory (DRAO). After much work and thought she has decided that communications with the
VCI should be messaged-based. When asked for the rational behind her decision to use a message-
based approach, she replied as follows:

A decision to use message based interface for communication between the EVLA
Monitor & Control System and the correlator is based on the following:

oose coupling

T

l : The message based interface allows loose coupling between the
rrelator. Loose coupling will allow the EVLA Monitor &

ontrol System and the correlator software to evolve independently. Also, loose
M&C System and the co
C
coupling will allow the EVLA M&C System(s) and the correlator (MCCC) to become

 13

active independently of each other, which is highly desirable in the environment
where the same M&C System may be managin
orrelator may be controlled by multipl

g more than one correlator and the
e users. c

simplicity: A message based interface will result in simpler software system
compared to systems that use distributed objects. Use of standard communication
protocols and techniques may

simplify system development and allow for faster

evelopment. d

performance: Message based communication is likely to provide better perform
than a distributed object system that uses remote procedure invocation.
Performance is a concern since a large number of messages will be transferred
over the VCI when full system re-configuration is required, or in the case of

ance

a

o handle large number of messages efficiently in order to keep up with requests
major failure. VCI, as a single point of access to the correlator, must be able
t
generated by multiple users. It is likely that delay and phase models will be
transferred over the VCI, which only increases requirements related to
performance.

testing and debugging: A message based interface allows operators and developers
 monitor content of the messages exchanged over the VCI, and to generate VCI

ased development

to
messages. This ability will facilitate testing and debugging of the system.

ph : Use of a standards based messaging interface will simplify

s
e VCI

ch is operated by highly trained

or & Control System and exposing the system architecture is
ch approach will allow each system to function and evolve

lts are
ariety of purposes, including:

isbehave

testing and debugging of software components. Use of human readable XML
messages will allow designers to generate and interpret messages relatively
easy, which will allow testing of a software component if the development of its
counterpart (on the other side of the interface) is delayed.

The distributed object system is often used to mask the fact that a system i
distributed over several computers and/or locations. In the EVLA System, th
ssages will be generated by the M&C System whime

personnel. Here, the intention is not to hide the distributed nature of the
system, but to facilitate diagnostics and troubleshooting. In the case of the
EVLA system, and in particular the EVLA correlator, decoupling of the correlator
from the Monit
sirable. Sude

relatively independently.

The message based interface based on the standards based infrastructure is
perceived as the best solution for the VCI interface.

3.5 Antsol/Telcal
Antsol is a software process that solves for the complex gains of the antenna. These resu

en used for a vth

• data quality displays (the “F” display in the VLA system)

• operational purposes including Tsys estimates

• real time determination of focus & pointing offsets

• phasing the array

• as a post-hoc diagnostic tool to determine when an antenna began to m

 14

• the contents of the Antsol files are piped to the AOC and placed in a flux calibrator database
for use by astronomers

Antsol is a component of the VLA online software system. Telcal (referred to as Real-time
Calibrator Analysis in the EVLA e2e Science Software Requirements document) is the EVLA
successor to Antsol. Most of this section is devoted to Antsol, as currently implemented for the
VLA, with the assumption that it will not differ much for the hybrid array using the VLA
correlator. Telcal becomes an issue when dealing with output from the WIDAR correlator (or,
more accurately, from the CBE). The design parameters relevant to Telcal have not yet been
specified.

Antsol, Inputs

The amount of visibility data transferred into Antsol’s address space for continuum is the produc
of the number of baselines with the number of IF pairs with the num

t
ber of polarization products.

Polarization

ducts

Baselines IF pairs

Pro

378 2 4

and, for spectral line,

)(#channelsnchscontinuumline ×=

with nch as follows:

IF pairs Pol Products Correl Mode nch

1 1 1A – 1D 16 - 512

1 2 2AB – 2CD 8 – 256

1 4 Px 4 – 128

2 2 4 IF mode 4 - 128

The visibilities are expressed as complex numbers, i.e., as a pair of floating point (REAL) numbers
Taking a floating point number as 32 bits means that each complex number will occupy 64 bits (8

.

ytes).

For continuum,

b

Kbytesbytes
complex

bytes 1,24=numberscomplex 625.2392
#

8024,342378 =×=××

or the spectral line modes, the worst cases are 1 IF pair, 1 polarization product with 512 channels,
nd 2 IF pairs, 2 polarization products, with 128 channels,

F
a

 15

MbytesKbytes
complex #

bytesscomplex 5.1512,18#536,193512 ≅=×=

11378 ×××

MbytesKbyt512, es
complex

scomplex 5.11
#

#536,19312822378 ≅×=×××

Antsol currently uses only the channel 0 summation – one (1) com ber per IF. However,
ove given data is transferred in ace to p it a more sophisticated

ode of operation that was never implemented.

lator mode

• # of channels per IF

• the calibrator flag

o U & V are expressed in nanoseconds

o the limits are expressed as 2 radii defining an annular region,
with the radii currently set to 0 and infinity

• the reference antenna

• the scan start time

• the previous set of solutions (already present in Antsol’s address space)

lent of DCAF), which gets it from the VLA

Fre

Every integration – long-term integration, not correlator dumps. For the VLA, the relevant
integration period is the long-term integration implemented in the array processor. For the EVLA,
the e ould be the integration implemented in the correlator backend
(CB , e VLA, for the worst-case spectral
line mo /3 seconds.

bytes8 =

plex num
ermall of the ab

m
to Antsol’s address sp

The visibility data can be viewed as being organized as arrays.

In addition to visibility data, Antsol also requires:

• the corre

• flagging data (both antenna-based and baseline-based)

• U-V limits

This additional data can be represented as a handful of bytes consisting of integers, reals, and a
short ASCII string for the correlator mode. This data comes from the archive record, which gets it
from the program named Dump (the VLA equiva
software global common regions.

quency of data input

 rel vant integration period w
E) not the correlator long-term accumulator (LTA). For th

des, the shortest integration period that is allowed is 6 2

 16

Antsol Out

I. Complex a each IF for each antenna =
 nna = 108 complex #s X 8 bytes/complex # = 864 bytes

II. s losure errors) for each IF for each antenna. The residuals are
e of the

ut data, the relevant integration period is the long-term
tegration implemented in the array processor (VLA) or the correlator backend (EVLA).

or Telcal in the EVLA, the volume of visibility data will be much higher, and it will be distributed
odes of the correlator backend cluster. The team put the question of the possibility
ntsol in some manner to Ken Sowinski. His reply was as follows:

that
data to come up with a least squares estimate of the antenna gains. The second
part requires relatively little data and by current standards only a little
computation (a few tenths of a second on a Modcomp).

es essentially no computation but only data selection. In
aseline

r the

aseline. Considering just these actions it would be to our advantage to
everse them; select the data from the frequency spectrum relevant to Antsol and

press it if the data is flagged or not in the

comp ion we will face over the current system is that we don’t want to do
 vector sum over frequency until any residual phase slope is removed. This
equires significant processing before the data integrated over frequency is

puts

ntenna gains consisting of one complex # for
27 antennas X 4 IFs/ante

A et of residuals (the c
represented by 1 complex # for each IF, for each antenna so, again, the volum
output is 864 bytes.

Frequency of data output

Every integration. As with the inp
in

Antsol results are distributed to:

• the VLA software commons They are written into a single buffer, which is overwritten
each time a new set of results are available

• a file

F
among various n
of parallelizing A

Consider that the computational part of Antsol can be divided in two parts;
first collect all the relevant data into a single array, and second use

The first part involv
the current Antsol, data selection amounts to first being sure that the b
being considered is not flagged and lies within specified u-v limits, and
secondly selecting the ‘continuum’ channel from the frequency spectrum fo
b
r
pass it, then in Antsol sup
required u-v range. To do this requires that nodes processing correlated data
know the frequency range of interest to Antsol, but nothing more.

A licat
a
r
sent to Antsol. Alternatively, is it always acceptable to simplify the
computation by using amp-scalar summing?

 17

In summary, I think not much data need be passed to Antsol if we are willing to

fore transferring it downstream
 the second-stage of Antsol. Exactly how much data must be transferred is an unknown at this

perator screens are custom displays used to monitor and control the array. Operator screens will

has

f data

 output stream from the MIB data port is an
ample of the multicast approach. The probable data type for data received by screens is ASCII,

e

 use the figure of 60 bytes per monitor point, then a screen’s worth of input data would
be 2,400 bytes (ignoring headers). If 5 screens, each containing 40 points, poll for data at a rate of

would be 12,000 bytes/second.

 screens. More
robable is the use of multicast, from the MIBs and from whatever other processes have data of

 Deployment Scenarios
e
m

accept that the backend nodes (if that is where the data is coming from) know
something about what Antsol wants to see.

 In other words, it may be possible to split Antsol into two parts, one of which resides on each
correlator backend node. This component can decimate the data be
to
point, but the strategy outlined above does bring the solution of the problem of getting the needed
visibility data into Telcal’s address space via parallel or high-speed serial I/O into the realm of the
possible.

3.6 Operator Screens
At the time the team was meeting relatively little was known about operator screens. However,
some general statements relating to traffic to and from the screens could be made.

O
run, primarily, on operator workstations located in the VLA Control Room at the site, but will have
the capability of running on any workstation, at any location, as long as the machine in question
access to EVLA resources such as antenna MIBs, the monitor and control host machine(s), etc.
The monitor portion of their functionality will predominate over control, and the amount o

ceived by the displays will far outweigh the amount of data sent by the displays. re

Two models exist for getting information to the displays. One would be to actively poll EVLA
resources; the other is for the resources to multicast the needed data, with the screens taking the
role of passive listeners to the multicast. The screens
ex
in an XML format, as per the MIB service and data ports. For data sent by operator screens, th
likely data format is ASCII, not XML encoded, as per the get and set commands received at the
MIB service port.

If polling is used, and if we assume that a typical screen will contain the data from 40 monitor
points, and

1 Hz, then the data rate

Polling is actually the less likely of the two alternatives for getting data to operator
p
interest to operator screens. If multicast is used, then the traffic to operator screens is simply a
function of the multicast traffic from the sending processes. It is not a function of the complexity
of the screens or of the number of screens. Operator screens would simply subscribe to the
appropriate multicast group(s) and filter for the data of interest. The use of multicast has been
assumed in all other sections of this document.

4
Deployment scenarios are important to a consideration of communications infrastructure becaus
deployment determines which processes are local or remote with respect to one another. The ter

 18

local is meant to denote communication within the same address space. Distributed or remote
communication refers to communication across address spaces, with the further distinction of
communication across address spaces on the same machine versus communication to other addres
spaces on different machines. In terms of speed and overhead, local communication is generally
the fastest and has

s

the lowest overhead, and communication to address spaces on other machines is
sually the slowest and has the highest overhead.

m

n
perator

F
AR correlator and Correlator backend in section

3.4. One significant difference between this diagram and the material so far presented is the
ver, sending commands to EVLA antennas, residing on a computing

en

WIDAR correlator.

nitor data archive multicast discussed in section

 the

tor

ould

u

The diagram given below shows one possible EVLA deployment scenario. It is presented as a
sanity check to help determine if some significant aspect of the possible communications scenarios
has been overlooked. Possible omissions with respect to communication across address spaces on

ifferent machines are particularly important. d

In this diagram, discrete boxes represent separate computing platforms. The components of the
EVLA Monitor and Control System occupy, basically, the bottom two-thirds of the page, i.e., fro
the box labeled “Array Monitor” down. Likely communications traffic among most of the
components shown in this diagram has already been discussed. For example, MIB commands to a
EVLA antenna was discussed in section 3.1.3. The operator screens that would run on the O
Console were discussed in section 3.6, the Executor in section 3.3, Telcal & Antsol in the DCA
box have been discussed in section 3.5, the WID

diagram shows an Antenna Ser
platform separate and distinct from the computing platform that hosts the Executor. In the
discussion of the Executor, commands were sent to EVLA antennas by the AntennaPhysical
objects, and these objects were shown as co-resident with the other components of the Executor.
This deployment diagram, therefore, implies an additional communication requirement – betwe
the Executor and an Antenna Server, across address spaces on different machines. As is the case
for sending commands to antenna MIBs, the driver for this communication would be the most
extreme case of OTF mosaicing - position updates for the ACUs. Presumably, delay updates for
the correlator would not be an issue for an antenna server, but delay updates must still be
communicated across the boundary between the Executor and the

For the EVLA test antenna software, the “Database Dumper”, “Flagger”, and “Checker” functions
run in the same machine as the Executor. Is it not unreasonable to assume that these functions may
eventually be pushed onto a separate computing platform. “Database Dumper” is the monitor
database archiving task. It subscribes to the mo
3.1.4.3.1, unpacks the XML data and sends it off to an Oracle database. “Flagger” listens to the
multicast alarms and alerts and forwards the relevant data to DCAF for the flagging of archive
records. “Checker” also listens to alarms and alerts, and displays the relevant information to
array operators. Alarms and alerts coming from the MIBs were discussed in section 3.1.4.4. Not
previously mentioned is that a few other processes in the EVLA Monitor and Control System will
also produce alarms and alerts. For example, the AntennaPhysical objects in the Executor are
likely to emit alerts at source changes. Deployment of the monitor database archiving task,
flagging, and Checker on a machine separate and distinct from the host machine for the Execu
will certainly have no impact on the communications overhead for alarms and alerts produced by
the MIBs. That these tasks may need to catch alarms and alerts multicast by the Executor sh
not be a significant factor.

 19

 Possible EVLA Deployment Scenario

 20

5 Additional Considerations
In addition to the foregoing material, the following items are also relevant to a consideration of the
nature of the communications infrastructure for the EVLA Monitor and Control system:

• Extension of the EVLA Monitor and Control System to Phase II of the EVLA

• The possibility of moving EVLA Operations from the VLA site to the AOC in Socorro

• The possibility of eventually extending the EVLA Monitor and Control System to include
operation of the VLBA antennas

• The transition plan, i.e., the creation of software to operate the hybrid array, first
with the Modcomps still present in the system, and then with the Modcomps retired,
but still with VLA antennas and the VLA correlator

5.1 Extension of the EVLA Monitor and Control System to EVLA Phase II
EVLA Phase II includes the addition of new antennas (8 new + 2 converted VLBA antennas) at
fixed locations relatively distant (~200Km to 250km) from the VLA, and use of the WIDAR
correlator as the VLBA correlator. The relevant considerations here are 1) geographical dispersion,
and 2) the need to modify and extend the EVLA Monitor and Control System software to support
these new capabilities. The goal is to create now an EVLA Monitor and Control System that can
be modified and extended with minimal impact on the software already deployed.

5.2 Moving EVLA Operations from the VLA Site to the AOC in Socorro
A group known as the Transition Plan Committee, chaired by Frazer Owen, is currently examining
the possibility of moving EVLA operations from the VLA site on the Plains of San Augustin to the
Array Operations Center (AOC) in Socorro, NM. If this possibility is to be accommodated by the
EVLA Monitor and Control System without requiring a major rewrite of the software then the
approach taken now must be inherently remoteable, and have a high degree of deployment
configurability. The ability to handle a geographically dispersed system is also required.

5.3 Extending the EVLA M & C System to Include Monitor and Control of VLBA Antennas
This step has not been formally proposed as a requirement for the EVLA Monitor and Control
system, but the possibility has been discussed, and it would be desirable to create an EVLA
Monitor and Control System that does not preclude doing it. The relevant characteristics for the
software would be the ability to handle a very widely geographically dispersed system with diverse
software platforms. The software must be remoteable and must scale.

5.4 Transitioning from the VLA Control System to the EVLA Control System
A document entitled VLA/EVLA Transition Observing System Development and Re-engineering
Plan (available at http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/index.shtml as
document #37) outlines the steps by which the transition will be made from the present VLA
Monitor and Control System to an EVLA Monitor and Control System that will then control the
hybrid array. In very broad terms, this plan specifies, first, an exchange of information & events
between the VLA Control System and the EVLA Control System, and then a re-allocation of
control functionality from the VLA Control System to the EVLA or EVLA accessible elements,
followed by retirement of the VLA Control System.

 21

The exchange of information and events required by the Transition Plan includes items such as

at
one d pre-
exi e
retir

Two u
subsyst nitor Processor (the CMP) will be used by the EVLA
Mo o is a new
control

The cu P is to implement the MIB service
ode developed for

t meet

a

t be

et.

yed
on and

roblem – distributed objects
 system

es

on

ol
not and cannot use objects throughout. To

flagging information for EVLA antennas sent to the VLA Control System, synchronization events
marking the start of a scan sent from the VLA Control System to the EVLA Control System,
antenna complex gains sent from the VLA Control System, etc. The important point to note is th

 en point of this exchange of information and events, the VLA Control System, is a
sting, legacy system that is not object-oriented, is CPU-cycle and memory limited, and will b
ed in less than three years.

 s bsystems currently under development play a crucial role in the transition plan. One
em, known as the Control and Mo

nit r and Control System to monitor and control VLA antennas. The other subsystem
ler for the current (VLA) correlator.

rrent plan for the public interface presented by the CM
port interface and the MIB data port multicasts. The advantage here is reuse of c
the MIBs and consistency of interfaces among devices.

The new VLA correlator controller is an embedded, resource-constrained subsystem that mus
tight, hard real-time deadlines. The code is written in C, and is not object oriented. For its initial
deployment, it will be controlled by the Modcomp computers and the VLA Control System, using
message-based interface.

An intermediate step in the transition plan calls for the migration of

1) the software that solves for complex antenna gains (Antsol),

2) the software used to develop pointing offsets for reference pointing, and

3) the archiving of metadata and visibility data

from the VLA Control System to a new, separate subsystem that is accessible by both the VLA
Control System and the EVLA Control System. Because this new, separate subsystem mus
accessible to the VLA Control System it will be message-based, using sockets over Ethern

6 Conclusions & Recommendation
So far, what has been presented is a logical analysis, underpinned in many cases by actual deplo
and running software, that attempts to characterize the types, rates, and volumes of informati
data exchanges among the processes that will constitute the EVLA Monitor and Control system.

With respect to the matter of communications infrastructure, the question becomes how is this
information to be distributed? There are two basic approaches to this p
and messaging. Speaking very loosely, we define a distributed object system to be a
composed of objects that communicate with one another via method invocations, be they local or
remote. At least at the level of the communicating objects, the distributed object approach requir
that objects be used throughout the system. We define a messaging system to be communicati
among processes by (short) ASCII-based strings of some defined format. These strings are, in
effect, a request for some transformation of state in the receiving process.

6.1 Objects Everywhere Is Not Possible
The distributed object approach presents an immediate problem for the EVLA Monitor and Contr
system. The EVLA Monitor and Control system will

 22

start, there is the matter of the MIBs. The MIBs are a resource limited, embedded processor. Ea
in the course of EVLA design and development a decision was made to prohibit the use of off-chip
RAM in the MIBs in order to mitigate RFI. All code in the MIBs must execute from on-chip
RAM. The total amount of RAM available in the MIB processor is 1.5 Mbytes. 1.5Mbytes of
RAM is insufficient to support an object-oriented approach for the MIB applications softwar
object-oriented approach for the MIB framework software was attempted. Early versions of the
framework software were written

rly

e. An

 in C++ and did use objects. It was quickly discovered that the
 for

ware, such as CORBA, that is used to implement

rface to the MIB that supports all of the

ons already cited, a decision was made to use a message-based

Tho etween the VLA control
system and must be
message-based. It is sim pt to retrofit the
VL h. To implement a distributed object

,

he
life expectancy of the VLA Control System or by a comparison of the effort required by a

ired by a message-based approach using sockets over

cant

f
pment of the new VLA

correlator controller predates the EVLA project.)

memory requirements for a C++ implementation were much higher than the memory required
equivalent functionality written in C. Among other issues, the dynamic nature of memory
allocation and deallocation that is associated with the object-oriented approach is a poor fit to the
tight RAM budget of the MIB. Additionally, the available RAM in the MIB is totally inadequate
with respect to the requirements of the middle
communication among objects in a distributed object system. Messaging systems are simply less
demanding of system resources than is the distributed object approach. Using a message-based
approach, it has been possible to develop a very clean inte
required functionality within the resources available.

There are a number of additional subsystems within the EVLA that also use a message-based
approach.

For sound and sensible reas
approach for the VCI.

se elements of the transition plan which require communication b
 (Modcomp computers) and the EVLA control system are message-based,

t makes no sense, to attemply not possible, or, at the leas
A control system with a distributed object approac

approach for the exchange of events and information, be it CORBA-based or some other method
would require that a middleware layer or some sort of adapter or adapters be implemented for the
VLA Control System. Such an undertaking seems in no way reasonable or justified by either t

distributed object approach to the effort requ
Ethernet.

The CMP, the means by which the EVLA will monitor and control VLA antennas, is message-
based. While it is theoretically possible to expand the resources available to the CMP to support a
distributed object, remote method invocation type of interface, doing so would require a signifi
investment of time, make reuse of the MIB Service port, Data port and Framework software
impossible, and would create an interface that is different from and incompatible with the interface
used for EVLA antennas.

The new VLA correlator controller, required for control of the hybrid array, is message-based, and
must be so if it is to communicate with the VLA control system. An attempt to re-engineer this
subsystem to permit of a distributed object type solution would require extensive modification o
the work that has already been done. (It should be noted that initial develo

Those elements of the transition plan that call for the piecemeal migration of functionality from the
Modcomp-based VLA control system to a system accessible by both the VLA and EVLA control
systems are message-based. Again, since the system on which these capabilities will reside must,

 23

during a period of its existence, communicate with the VLA control system, a distributed object
approach is not possible unless one writes two control interfaces – a message-based interface for
the VLA control system and a distributed object interface for the EVLA control system.

Unless one is willing to undertake a very substantial modification of the VLA Control System, a
thorough reworking of the CMP and VLA controller software, and a reformulation of the plans for
migration of VLA functionality to the EVLA, a message-based approach using sockets over
Ethernet seems to be virtually mandated for transition from the VLA to the EVLA.

6.2 Best Fit
The information and data to be distributed by the monitor and control system consists chiefly of

• commands (MIBs) and configuration requests (VCI)

• responses to commands and configuration requests

• monitor data

• alarms and alerts

• error messages

• logging messages

• data structures containing configuration or model information

r
ll

in XML format. Visibility data will almost certainly not be

IB

r

tural fit to the distribution of monitor and control information within the

itor and Control system for Phase I of the EVLA

• metadata relating to an observation

• visibility data

• a few special cases such as loading code or XML configuration files
into a MIB

Commands and configuration requests, responses to commands and configuration requests, monito
data, alarms and alerts, error messages and logging messages are all ASCII strings, most but not a
in XML format. The configuration files for the correlator backend are basically data structures,
presented as ASCII strings in an XML format. Metadata, while not discussed in this document will
probably be ASCII strings, probably
ASCII strings, but rather binary data. Code loading uses a special (S-record) format, and the M
configuration files are ASCII strings in an XML format. Virtually all of the monitor and control
information and state information that is to be distributed within the monitor and control system is
ASCII strings, most of it tens or hundreds of bytes in length. With the exception of correlato
backend configuration, the largest anticipated size is in the range of a few tens of kilobytes.
Messaging seems to be a na
system. Messaging is not a reasonable solution for the distribution of visibility data within the
system.

6.3 Lack of Pervasiveness & Increased Complexity
The total processor complement in the EVLA Mon
will be roughly as follows: ~ 1000 MIBs, 3 to 5 systems in the VLA Control Building (not
including operator terminals), the Master Correlator Control Computer (the VCI host), a Correlator
Power Control Computer (CPCC), ~ 300 CMIBs, the CBE multiple-processor cluster (estimated at

 24

64 processors), and, during the transition, 2 processors in the CMP. In round numbers, that’s
approximately 1375 processors. Of that total, only the 3 to 5 processors in the Control Building a
actually suitable candidates for a distributed object approach. Even if one argues that the

re
 core

s at the higher
onitor and Control system while continuing to use a message-based approach for the

com e off in terms of increased system
fun ded, the resulting system would be less
rob , re longer timelines and more manpower
to develop, and need more heavily resourced, and, therefore, more costly computing platforms.

6.4 i
In addition to the arguments and issues outlined in the preceding sections, the team identified the
foll i f a message-based approach that makes it well suited to the needs and
requ e software:

A m ss . Loose coupling provides a
host of advantages. It is a robust approach to the organization of a real time software system that
helps to isolate errors. It increases modularity and decreases the degree of interdependence within
and r . Increased modularity and decreased interdependence will help to maximize
the VLA Phase II and to
control of VLBA antennas without a major rewrite of the EVLA software.

s,

processors run in a VME chassis. Core monitor and control processes, such as the Executor,
t Linux on a Pentium-based system

functionality of the monitor and control system resides on those 3 to 5 processors, the fact that the
remaining 1370 processors all use a message-based approach to communication among distributed
processes undermines the utility that might be had from using a distributed object approach. It
might be possible to write adapters or translators of some sort that would allow the use of
distributed objects communicating via CORBA-mediated remote method invocation
levels of the M
MIBs, VCI, and the CMP. However, there seems to be no technical or engineering advantage to
doing so, and more than a few disadvantages. A very considerable and significant amount of

pl xity would be added to a real-time system with no pay
ctionality or capabilities. Since complexity would be ad
ust more difficult to maintain, modify and extend, requi

 Su tability

ow ng characteristics o
ir ments of the EVLA

e age-based approach provides strong support for loose coupling

 ac oss subsystems
 probability that it will be possible to extend the EVLA control system to E

The message-based approach will result in a simpler software system, requiring fewer resources
and less time to develop than a distributed object approach.

It will provide a level of performance that is likely to be superior to a distributed object approach
that uses a heavier-weight solution for communication among objects.

A message-based approach, using ASCII messages, maximizes the visibility of the interactions
among distributed components, which should facilitate debugging.

It is scalable to and beyond the degree required.

A message-based approach is agnostic with respect to computing platforms, operating system
programming languages, and programming paradigms. The EVLA software is currently running
the Nucleus Plus operating system on the MIBs (a TC11IB processor). The CMP uses TimeSys
Linux running on a PowerPC processor and VxWorks running on a 68040 processor. Both

flagging, monitor data archiving, etc. run under Red Ha
(mchost). C, Java, and jython are used. Some of the EVLA software is object-oriented, and some
is not. The VLA control system runs on Modcomp computers, which run a proprietary Modcomp
operating system. The VLA online system is written chiefly in Fortran and assembler. None of it
is object-oriented. All of these platforms and components must be accommodated. Additionally, it

 25

is wise to preserve future options for the use of other platforms, operating systems and languag
both during development of the initial software for the EVLA and after deployment.

Very importantly, a message-based approach provides strong support for the independent evolution
of components within a system. For the EVLA, the independent evolution of components does not
mean the parallel development of components within the context of an agreed upon common
infrastructure, along similar tightly coupled timelines, in the same or different locations. For the
EVLA, the situation is more complex. For example, the EVLA control system must be able to
evolve independently of the VLA Control System, even while interfacing to it, and interacting with
it to differing degrees and in differing ways at various stages in the Transition plan. The VLA
Control System is a legacy system. It already exists, and to a large degree must be taken as a give
The MIB interface evolved independently with respect to other components of the EVLA contr
system because of the need to support antenna hardware development at the earliest phase of the
project. The MIB interface is now a relatively mature and fully functional interface. It is doubtful
that project timelines, manpower resources, and the available dollars would support a major rework
of the MIB software. And, certainly, it is clear that EVLA Phase II software and possible contro

es,

n.
ol

l
as will happen on timelines that are quite independent of the timeline for

hybrid array has a major impact on and is a major constraint

empt to retrofit it with a

h

pecific case of the VLA-EVLA

 difficult to argue in favor
ly

tware and one for the final form
nts could not be grown from or evolved from

and

st

d
issues.

of VLBA antenn
development of the control software for EVLA Phase I.

6.5 Requirements of the Transition Plan for Control of the Hybrid Array
The Transition Plan for control of the
upon the decision concerning the approach to take for the EVLA communications infrastructure.
Various aspects of this plan require the exchange of information and events between the VLA and
EVLA Control Systems and the development of subsystems that can be controlled by both the VLA
Control System and the EVLA Control System. The VLA Control system is a short-lifetime,
resource-limited, legacy system running a proprietary Modcomp operating system with applications
written chiefly in Fortran and assembler that are not object oriented. An att
distributed object approach to communications seems very ill advised. A message-based approac
using sockets over Ethernet is by far the more efficient approach to the issues of inter-system
communication and mutually accessible subsystems for the s
transition software and control of the hybrid array.

If the transition software is to be message-based, it becomes much more
of a distributed object approach for the mature form of the EVLA software. Two separate, most
discontinuous, efforts would be required – one for the transition sof
of the EVLA software. EVLA software compone
transition software components. Indeed, even most of the physical components of the hybrid array
would be useless with respect to testing EVLA software – only the EVLA computing platforms
EVLA-converted antennas would be workable testbeds. Further, it would be necessary to unload
the transition software and load the developing EVLA software to conduct tests. Scheduling of te
time then becomes an issue, and test time itself becomes a scarce resource. Operators would
require training for two different types of systems. The amount of throw-away software woul
increase dramatically to include virtually all of the software developed to address transition
And the list does not end with the items so far mentioned. Many, many more issues would arise.

A strong and distinct dichotomy between the approaches taken by the transition monitor and
control software and the mature form of the EVLA monitor and control software simply does not
provide reasonable software development scenarios. It does not make efficient use of the available

 26

manpower, it would make it much more difficult, if not impossible, to meet the current EVLA
project schedule, and it makes ensuring continuous operation of the array very problematic.

In

The syntax is simple and straightforward. Not a great burden on a sending process. Additionally,
s, monitor points,

e

e of
ble to

nd to have as much uniformity across NRAO as

e of

of
First,

6.6 Disadvantages of Messaging
One of the chief disadvantages in message-based interfaces is that software processes wishing to
send messages to a receiving process must know both the syntax and semantics of the messages.
other words, the sending process must be given knowledge of what a receiving process will
consider a valid message. If a new message or message type is added, both the receiving process
and the clients must change. The burden of this disadvantage can be considerably reduced by
paying careful attention to the message syntax, and by making the interface self-describing. The
message-based interface that has been implemented for the MIB is a case in point.

There are only two basic commands for the MIB – set and get. The basic command format is:

set

or <device name>.<monitor or control point name>.<attribute name>=<value>

get

the sending process (client) need not be have a built-in awareness of the device
and control points for each and every MIB-controlled device because the MIB interface is self-
describing. A “get *.*.*” command will return to the process that issued the query a list of all
devices connected to the MIB, all monitor and control points for each device, and all attributes for
each monitor and control point. That the MIB interface is self-describing allows a single device
browser, with no built in knowledge of the devices, to be used to command and to determine th
state of any MIB-connected device in the system. In this manner, the burden of requiring a client to
have detailed knowledge of the vocabulary of the device or process with which it wishes to
communicate can be substantially reduced.

Another disadvantage of the message-based approach is that it reduces the opportunity for reus
ALMA software. It is understandable that, from a management point of view, it is very desira
reuse as much of the ALMA software as possible, a
can be achieved. The key phrases are “as possible” and “as can be achieved”. The ALMA
Common Software (ACS) uses the distributed object approach. Unfortunately, that approach is
either a poor fit or simply unworkable with respect to many of the engineering and technical
requirements and constraints found in the EVLA project.

6.7 An Aside, The Use of UDP and Multicasts as a Message Protocol and Transport
Messages can be transported in many ways – TCP/IP, UDP unicast, and UDP multicast to name
just a few. While the issue of the transport mechanism used for messaging is quite independent of
the issue of messaging versus distributed objects, some concerns have been voiced over the us
UDP and multicast in the EVLA Monitor and Control software.

The main issue with respect to the use of UDP seems to be that it does not guarantee delivery of the
datagram. UDP packets can be dropped, with no notification to the sender and no retransmission
the dropped packet. EVLA monitor and control software takes two approaches to this issue.
the EVLA monitor and control network is a fiber-optic, full-duplex, switched network. This
statement means that each and every node on the network has a separate point-to-point connection

 27

to a switch for both the receive and transmit paths to and from the node in question. In theory,
the network is full-duplex with each node connected directly to a switch should guarantee that th

that
ere

will be no collisions, and, as long the packet rating of the switch is not exceeded, there should be no
 and practice are never perfectly matched. While it may be true

opped

nds to an
he

rted state. Discrepancies between the two states will be reconciled by retransmission of the
mands needed to bring the state as reported by the antenna into compliance with the

econd example concerns alerts transmitted as multicast datagrams. Originally, an alert-on

, the

equires extra effort why not use TCP/IP. The reply is

e
e

d state, and take steps if the two states
 the use

al

dropped packets. However, theory
that there will be no collisions, for a number of reasons packets will be dropped. Use of a full-
duplex, switched network, with the bandwidth available on each segment of the network chosen to
exceed the expected traffic on that segment, will minimize but never completely eliminate dr
packets.

The second step taken to address the issue of dropped packets is to design the software to be
tolerant of packet loss. Two examples are offered to illustrate this point. First, with respect to
command delivery, the EVLA monitor and control software entity that sends comma
antenna will also receive monitor data from that antenna and compare the commanded state to t
repo
com
commanded state.

The s
message was sent only once, when a device entered the alert state, and an alert-off message was
sent only once, when a device exited the alert state. It was found that in a few cases alert-off
messages could not always be matched with alert-on messages event though direct query of the
device showed that the device had exited from the alert state. Presumably, but not conclusively
mismatch can be attributed to dropped packets. It has now been decided to include the alert state of
each and every monitor point in the multicasts of the monitor point values that are sent on a
periodic basis to the archive, to screens, and to software processes performing operational
activities. This method should prove quite robust in the presence of dropped packets and make the
detection of alert-on and alert-off states easy and straightforward.

A reasonable question is, if the use of UDP r
that the steps taken are not extra effort, and, in the context of a real-time system, TCP/IP has a
number of disadvantages that are best avoided unless the use of a TCP/IP based approach can be
demonstrated to have significant advantages in other respects. That TCP/IP would guarantee the
delivery of commands to a network stack and a software application associated with a device in no
way guarantees that those commands actually reach the correct hardware registers in the lower
levels of the device or that the software and hardware in the device will act on the command in th
expected manner. In the monitor and control system it will always be necessary to monitor th
reported state of the antennas, compare it to the commande
do not match regardless of the transport or protocol used to deliver commands. Similarly,
of TCP/IP to deliver alerts in no way addresses the issue of broken or stalled connections, abnorm
termination of the receiving processes, or a host of other conditions, other than dropped packets,
that would prevent actual delivery of the alert. Sensible real-time system design dictates the use of
methods and techniques that allow system functionality to be robust and recoverable in the face of
these possibilities.

TCP/IP does complicate real-time system design in a number of ways. TCP/IP is a connection-
oriented protocol, and the sending process blocks on the send until it receives an acknowledgement
that the message has been received. That it is a connection-oriented protocol means that connection
management will be required. It can be difficult, time-consuming, and complex to break and
reestablish a TCP/IP connection that, for any number of reasons, has stopped functioning. Often,

 28

the necessary corrective actions cannot be accomplished in a purely automated fashion, by software
running in the system. Human intervention may be required, sometimes taking the form of
manually aborting and restarting one or both processes at the endpoints of the connection.
Connection management is undesirable in a real-time system if a simpler approach is available.

That TCP/IP is a blocking protocol adds complexity. First and foremost, blocking has the potential
to destroy timing in a real-time system. Consider the situation of the software entity responsible for
sending commands to VLA and EVLA antennas. If UDP is used, the command(s) for any one
antenna are sent and the software moves on to the next antenna. If TCP/IP is used, the command is

s
ung

onal code

atus of the threads to insure that the system is not swamped by hung threads.
e

s

hough
d of

option of a more complex

rk

c multicast applications. The Network Time Protocol (NTP) is a multicast

sent and the software processes blocks on the TCP/IP send awaiting acknowledgement. An
unknown number of retries may be required, and, if the connection is down, the software proces
may hang. For the TCP/IP scenario, determinism is decreased or destroyed. For the case of a h
connection, the observation, or some portion of it, may be lost. For TCP/IP, to get a non-blocking
return, one would be required to generate a new thread either for each message or have a series of
persistent threads, one per antenna. This requirement leads, in turn, to the need for additi
that checks on the st
While the multiple thread scheme outlined for the use of TCP/IP is potentially workable, it is to b
preferred over UDP only if the use of a TCP/IP-based approach offers advantages that offset the
increased complexity.

The EVLA Monitor and Control group is using TCP/IP in some contexts. In particular, it appear
promising in the context of exploiting web-based technologies as the basis of user interfaces to
some software processes. Some consideration is also being given to the use of HTTP, which is
TCP/IP based, for the communication of antenna commands at some levels in the system, alt
perhaps not at the level of final delivery of commands to the hardware. For now, the metho
choice is UDP. UDP is not an unreasonable choice. That it is connectionless and non-blocking
reduces system complexity and helps to maintain determinism. Ad
approach is justified only if that approach offers some compensating advantage. It remains to be
seen if the use of TCP/IP based transfer of information offers advantages that outweigh the
disadvantages.

The main objection to the use of multicast that has been voiced is that multicast is not a standard.
Multicast is a capability that allows a single copy of a packet to be addressed to a group of nodes
that have expressed a desire to receive it. It depends upon routers and switches within the netwo
to forward the packet to the networks containing the receiving nodes.

The Internet Assigned Numbers Authority (IANA) has assigned a group of IP addresses to be used
for IP multicasting. The assigned address range is 224.0.0.0 to 239.255.255.255. Within that
address range, certain addresses or ranges of addresses have been reserved. For example, the
addresses 224.0.0.0 through 224.0.0.225 are used by network protocols on local network segments.
Network protocols use these addresses for automatic router discovery and to communicate routing
information. 224.0.1.0 through 238.255.255.255 are globally scoped addresses. They can be used
to multicast data between organizations and across the Internet. Some of these addresses are
reserved for specifi
application that uses the address 224.0.1.1. NTP is used by the MIBs in the EVLA antennas to
initially set the time. The addresses in the range 239.0.0.0 through 239.255.255.255 are limited
scope addresses. They are defined by RFC 2365 to be constrained to a local group or organization.
And, so on, and so on. The point is that standards exist for multicast addressing.

 29

The Internet Engineering Task Force (IETF) has also been developing a set of standards to address
the issues of dynamic registration and multicast routing. RFC 1112 defines the Internet Gro
Membership Protocol (IGMP). IGMP specifies how a host may join a multicast group, leav
group, and provides a means for membership queries and reports. There are several standards

up
e the

available for routing IP Multicast traffic. RFC 1075 defines the Distance Vector Multicast Routing
Protocol (DVRMP). RFC 1584 defines the Multicast Open Shortest Path First (MOSPF) protocol,
and extension to OSPF that allows it to support IP Multicast. And, there are now two Internet
standards-track drafts describing Protocol Independent Multicast (PIM), a multicast protocol that
can be used in conjunction with all unicast IP routing protocols.

The standards cited are just a sample. They were chosen to illustrate that standards exist that
specify the fundamental components of multicasting – addressing, group dynamics, and multicast
routing. For a much fuller and more complete list of the relevant IETF documents and discussion
of many other issues related to multicasting, a good web site is SWITCH, the Swiss Education and
Research Network, http://www.switch.ch/network/ipmcast/references.html. Of course, one can
also consult the IANA site, http://www.iana.org/, and the RFC archives, http://www.faqs.org/rfcs/.
A google search on keywords such as “IP multicasting” produces a wealth of resources.

Finally, let it be emphasized, once again, that the material in this section is basically a digression.
It is not germane to the

 basic issue of messaging versus distributed objects that is the focus of this

od
-

a
ents

ted in advance. ACS is a good fit to a project that has geographically dispersed

ributed objects in the ALMA

re

am that the
distributed object approach is a poor fit to or unworkable for many of the requirements that must be

document.

6.8 Recommendation
The ALMA Common Software (ACS) was considered for use in the EVLA Monitor and Control
System. ACS is an example of what this document has termed the distributed object approach.
ACS has many strengths. It supports strong typing and compile-time discovery of incorrect meth
invocations. The use of an Interface Definition Language (IDL) compiler provides a language
independent means of describing interfaces. ACS in particular has great strengths in dealing with
complex distributed system for which the deployment of and the interactions among compon
cannot be predic
software development teams working on components in parallel with similar, relatively tightly
coupled timelines.

All of the team members, with the exception of Pete Whiteis, had some degree of exposure to the
ALMA Common Software that is basis for communication among dist
system. At the time the team was formed, Bill Sahr had attended the three-day ACS Workshop
held in Garching (March 2004). Chunai Cai had attended a 3.5 day course given in Socorro, had
successfully installed ACS 3.0 on her workstation and had written and tested a number of
components that used ACS to communicate. Rich Moeser, and Kevin Ryan, had taken a two-week
ACS course given in Garching. Boyd Waters had attended a two-week ACS course in Garching,
had done some work on porting early versions of ACS to compilers, and had authored a
comparison of ACS to other methods of distributed object communication that was included in the
document set prepared for the AIPS++ Technical Review.

The team feels that, for the general case, both the distributed object and messaging approaches a
workable solutions for the problem of real-time control in a distributed system. However, the
pertinent question for the EVLA is which approach best fits the staffing, timelines, engineering,
scientific, and functional requirements of the EVLA. It is the conclusion of the te

 30

satisfied by the EVLA Monitor and Control System. The team members unanimously recommend
that a message-based approach be used for the communications infrastructure of the EVLA
Monitor and Control System. It should be clearly stated that acceptance of this recommendation
means that the EVLA Monitor and Control System will not use the ALMA Common Software.

It should be further stated that since the interfaces between the EVLA on-line systems and the other
components of the end-to-end software, other than the data archive, are sufficiently simple and
straightforward, the use of a message-based approach for the EVLA Monitor and Control System
does not preclude the use of ACS elsewhere in the EVLA software.

 31

	Executive Summary
	Introduction
	Characterization of Communications
	MIBs & Collections of MIBs
	MIBs, Data In
	MIBS, Data Out
	MIBs, Data In, Discussion
	Set commands Received Via the Service Port
	Get Commands Received Via the Service Port
	Code Loading
	XML Device Configuration Files

	MIBs, Data Out, Discussion
	Responses to Set commands when the -v (verbose) option is se
	Responses to Get Commands (MIB Service Port)
	Monitor Data from the MIB Data Port
	Monitor Data To the Archive
	Monitor Data to Software Processes and Operator Screens (MIB

	Alarms and Alerts (MIB Data Port)
	MIB Error Messages, MIB Logging Messages (MIB Data Port)

	The Control and Monitor Processor (CMP)
	The Observation Executor and Antenna Objects
	Correlator and Correlator Backend Configuration
	Virtual Correlator Interface

	Antsol/Telcal
	Operator Screens

	Deployment Scenarios
	Additional Considerations
	Extension of the EVLA Monitor and Control System to EVLA Pha
	Moving EVLA Operations from the VLA Site to the AOC in Socor
	Extending the EVLA M & C System to Include Monitor and Contr
	Transitioning from the VLA Control System to the EVLA Contro

	Conclusions & Recommendation
	Objects Everywhere Is Not Possible
	Best Fit
	Lack of Pervasiveness & Increased Complexity
	Suitability
	Requirements of the Transition Plan for Control of the Hybri
	Disadvantages of Messaging
	An Aside, The Use of UDP and Multicasts as a Message Protoco
	Recommendation

