
 

 
 
 
 

Module Interface Board - MIB 
 
 
 

Service Port 
 
 
 

Interface Control Document 
 
 
 
 
 

Version 1.2.0  
 



 

 i 

 
 

Table of Contents 
 
1 Introduction............................................................................................................................. 1 
2 Connection.............................................................................................................................. 1 
3 Data Organization................................................................................................................... 1 
4 Interface Commands ............................................................................................................... 2 

Table 1. SP Command Qualifiers ............................................................................................... 2 
4.1 Command Line Separators.............................................................................................. 2 

5 Document Keys....................................................................................................................... 3 
5.1 Syntax Key...................................................................................................................... 3 

Table 2. SP Syntax Key .......................................................................................................... 3 
5.2 Terminology Key ............................................................................................................ 3 

Table 3. SP Terminology Key ................................................................................................ 3 
6 Command Format to the MIB................................................................................................. 3 

6.1 Command selection criteria ............................................................................................ 3 
6.2 Wildcard Operations ....................................................................................................... 4 
6.3 Get ................................................................................................................................... 5 
6.4 Set.................................................................................................................................... 7 
6.5 Attribute Lists ................................................................................................................. 9 

Table 4. Analog MP attributes list .......................................................................................... 9 
Table 5. Digital MP attributes list ......................................................................................... 10 
Table 6. Analog CP attributes list ......................................................................................... 11 
Table 7. Digital CP attributes list.......................................................................................... 12 
Table 8. Engineering Units ................................................................................................... 12 
Table 9. Analog Monitor Conversion Types ........................................................................ 13 
Table 10 Device Types ......................................................................................................... 13 

7 Response Format from the MIB ........................................................................................... 14 
8 Time-deferred SP Commands ............................................................................................... 15 

8.1 Indicating a Time-Deferred Command ......................................................................... 15 
8.2 Time-Deferred Command Format ................................................................................ 16 
8.3 Restrictions on Commands ........................................................................................... 16 

8.3.1 Number of set operations ...................................................................................... 16 
8.3.2 Time must specify future time .............................................................................. 16 

8.4 Command Queuing ....................................................................................................... 16 
8.5 Command Execution..................................................................................................... 16 

8.5.1 Command Execution Time Missed....................................................................... 17 
8.6 Command History......................................................................................................... 17 
8.7 Administration of the Queue ......................................................................................... 17 

9 Service Port Details............................................................................................................... 18 
9.1 Terminology.................................................................................................................. 18 

Table 11. Service Port Facility Terms .................................................................................. 18 
9.2 Service Port Facility Description.................................................................................. 18 

9.2.1 Input Handling ...................................................................................................... 18 



 

 ii 

9.2.2 Output Handling.................................................................................................... 19 
9.2.3 Queue Dump Function.......................................................................................... 20 

9.3 Service Port Server Description.................................................................................... 20 
9.3.1 Service Port Server Implementation..................................................................... 20 
9.3.2 Service Port Server Task....................................................................................... 21 

9.4 Execution Tasks ............................................................................................................ 21 
9.5 Shell Interface ............................................................................................................... 22 
9.6 Service Port Test Program ............................................................................................ 22 

10 MIB Device Points................................................................................................................ 23 
Table 12.  Digital Control Points .............................................................................................. 23 
Table 13.  Analog Monitor Points............................................................................................. 23 

11 Appendix............................................................................................................................... 25 
Figure 1. MIB Software Diagram ......................................................................................... 25 

Table 14.  Flash Memory Layout.............................................................................................. 26 
 

Revision History 
Revision Date Author(s) Description of Changes 

1.0.0 Unknown Elwood C. Downey Original version. 
1.1.2 October 8, 2003 Elwood C. Downey Base revision in CVS. 
1.2.0 June 30, 2004 C. Frank Helvey Updated to reflect actual implementation 

of MIB framework and service port 
server.  Implemented document revision 
number as document property 
"REVISIONLEVEL" which is accessed 
through the File->Property->Custom 
menu.  

 August 9, 2004 C. Frank Helvey Incorporate review comments from Bill 
Sahr. 

 September 22, 2004 C. Frank Helvey More review comments from Bill Sahr. 
 

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 1 of 26 

1 Introduction 
This document describes the communication protocol over the Service Port (SP) on the Module 
Interface Board (MIB). The MIB is physically connected to the EVLA LAN on the one hand and 
to one or more pieces of electronic equipment on the other. The MIB functions as a uniform 
LAN interface for this disparate equipment. 

The SP is used primarily by software processes to perform operational array activities. The same 
command syntax is available for engineering personnel via telnet from the operating system shell 
connection.  Likewise, the same response syntax is used on the operating system shell as on the 
SP.   Software client processes are discouraged from using the shell connection. 

For completeness, it should be mentioned there exists another LAN connection on the MIB 
called the Data Port. It transmits all MPs with UDP datagrams on a periodic basis for any process 
wishing to know these values.  It will also sends out alert data if a MP enters the alert state or 
transitions out of the alert state.  MPs have attributes which affect the rate at which they are 
transmitted.  Details of the Data Port are described in the MIB Data Port Interface Control 
Document. 

See Figure 1. MIB Software Diagram for a schematic depiction of the overall MIB software. 

 

2 Connection 
The MIB present s UDP port 7000 for service port commands. All communications use ASCII 
lines. Each command fits within one UDP packet so no terminator is required. 
 
The operating system shell is presented on TCP port 23 (the TELNET port). 
 
 

3 Data Organization 
The MIB presents the electronics equipment to the SP as one or more logical Devices, each of 
which has one or more Monitor Points (MP) or Control Points (CP).  Each MP and CP has a set 
of Attributes including an Attribute that represents the value of the point.   The other Attributes 
expand upon certain auxiliary issues related to that value, such as allowed minimum and 
maximum; each Attribute is defined to be a read/write or read-only field. 

A logical Device need not correspond to a physical device. The association between logical 
Devices on the Service Port and physical devices at the hardware level is made by the module 
specific code and the MIB framework code, and depends upon the exact equipment connected to 
the MIB. The MIB itself will be one such logical Device for controlling and monitoring 
functionality wholly within the MIB. 

Device, MP and CP names consist of alpha, digit and underscore (_) characters only. Case is not 
significant. MP and CP names taken together must be unique for one Device. Only the first 7 
characters are significant for the Device names, and only the first 23 characters are significant for 
MP and CP names. 

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 2 of 26 

4 Interface Commands 
The only two SP commands are get and set. Get requests information from the MIB's logical 
points (MP or CP) and may cause communications activity with the equipment associated with 
the Device.   Set actively makes changes on the MIB and possibly to the equipment associated 
with the effected Device.  
 
There are two command qualifiers that can be used for the get and the set commands.  Those 
qualifiers are given in the following table. 
 

Table 1. SP Command Qualifiers 

Qualifier Applies To Meaning 
@ Set Introduces a time of execution for this command.  If the time 

format (see below) and the set command's parameters are valid 
this will cause the rest of the set command to be processed at 
close to the time given.   The exact time of execution is after the 
EVLA system timing pulse that occurs just before the time given.  
See section 8, "Time-deferred SP Commands" for more 
information. 

-v Get or 
Set 

This is a "verbose" option to produce additional output for the 
command for which it is specified.   For the get command this 
produces a "MIBstats" system statistical and current operating 
system state output.  For the set command this produces a 
message indicating success or failure of the command; if the 
command is successful, the message will either be a count of 
matching Attributes found or if combined with the @ qualifier, the 
success of the queuing of the time-deferred command and the 
command sequence number assigned to it.  If the command fails 
then some type of informative message will be displayed. 

 
 
After receipt of a valid get command the MIB will always return one response containing the 
requested information. A response from a valid set command is dependent on the presence of 
the -v option or on the severity of the error encountered in trying to queue a time-deferred 
command.   Syntax errors in commands will generate always generate an error message. 
 

4.1 Command Line Separators 
Multiple whole commands may be packed into one packet separated by semicolon (;) or newline 
(\n) characters. The two character sequence backslash-n (e.g., "\n") is also considered a valid 
separator.  The Shell connection can use the semicolon or multicharacter sequence but usually 
not the newline character. 
 
A command line may be continued by using the backslash character followed by the newline (\n) 
character or a carriage return (\r) character.  However, this does not allow the command to span 
more than one UDP packet or shell command buffer, so its usefulness is limited to making 
commands more readable to a user. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 3 of 26 

 

5 Document Keys 

5.1 Syntax Key 
All SP commands and responses are in a different font than the rest of the text in this document; 
the font used is the one in the following syntax overview. 

 

Table 2. SP Syntax Key 
Syntax Meaning 
abc literal 
<abc> variable 
[abc] optional 
{a|b|c} one of a set 

  

5.2 Terminology Key 
The following terms are used in the document. 

Table 3. SP Terminology Key 
Term Meaning 
device A name of a device connected to the MIB, including the 

MIB itself; generally there is a 1:1 correspondence 
between a device and a single piece of hardware.  This 
can be up to 7 characters long. 

property A particular CP or MP on a device.  This can be up to 
23 characters long. 

attribute The name of an individual piece of data that is part of a 
MP or CP entry.  This can be up to 23 characters long.   
Each MP and CP has an attribute called type that 
further qualifies its attribute list; the type attribute's 
value can be either analog or digital.  The tables 
below summarize the attributes available for each type 
of MP and CP.  

value The value attribute of a CP or MP.  This can be up to 47 
characters long. 

 

6 Command Format to the MIB 

6.1 Command selection criteria 

A get or set command selects the data item(s) it operates on by using a set of data called a 
triple.  This is a set comprised of a device, property, and attribute name.  These three components 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 4 of 26 

are collected into a triple using a period (.) as the separator.  From one to four triples may be 
present, each separated by one or more blanks. Each component may be specified as a name to 
indicate a particular instance or it can be the wildcard character (the asterisk (*) character) to 
indicate all instances.  The device name is the only required name, and the attribute name can be 
omitted if the property name is present.    

 

6.2 Wildcard Operations 
The * character is used as a wildcard in the device, property, and/or attribute names, and for the 
set command as a value.  The presence of the wildcard character in a device, property, or 
attribute position means that position can have any value; thus the rest of the command's 
information will determine the CP and/or MP that are matched by that command.   When the 
wildcard character appears as the value it indicates that the CP or MP matched by the rest of the 
command should be set to its default value. 

Wildcard operations involving selection criteria are considered to have succeeded if a single 
device.property.attribute is found that matches that operation's request and is valid for that 
operation. 

For a get, because all attributes of all properties are readable, any matching 
device.property.attribute value will work, and the command's response will report all of the 
matches as appropriate. 

For a set, not only does a particular device.property.attribute have to match the command's 
request, but the resulting match must also be writeable.   If no writeable matches are found for 
the command then the "read-only" error message will be output if the -v option was also 
specified. 

If the -v option was specified and the set command succeeds, the success message that is output 
will indicate the number of matches found for that command.   This is done for sets with the -v 
option no matter if the wildcard character is present or not. 

 

WARNING 
Use of a wildcard in the selection criteria for a set of the value field of a point is allowed 
but, in general, should not be done, especially if it is the ‘MIB’ device whose values are to be 
modified - the MIB's 'Reboot' property will cause the device to reboot if set to any value via 
the Service Port. 

 

If the asterisk character is used as the value to which an attribute is to be set, then the SP will 
access the default value for the device.property.attribute set and set the current value to that 
default.   The MIB stores the default values of attributes in nonvolatile memory as an aspect of 
its configuration; if not present in the configuration the default value will be 0 (or the empty 
string for string-valued attributes). 

 
WARNING 
Note that using the asterisk in the value position of the command can be significantly slow. 

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 5 of 26 

6.3 Get 

get [-v] {<device>|*}[.{<property>|*}[.{<attribute>|*}]] 

The get command queries information about devices, properties, and their attributes. If the 
property component is absent the response only includes device information. If the attribute 
component is absent the value attribute is used.   

See the Table 1. SP Command Qualifiers above for the options that the get command 
supports.  

Here are some example get commands and their associated output; these commands are for a 
particular MIB software implementation, so another implementation could have different 
device and property (CP and/or MP) names.  Note the timestamps are in MJD format and 
represent when the output was begun to be formed so it could be sent out to the client. 

Get the name and other general information of all logical devices for this MIB:  get * 
 
<EVLAMessage location='Antenna 13' timestamp='53198.804700'> 

<device name='device1'> 
</device> 
<device name='device2'> 
</device> 
<device name='MIB'> 
</device> 

</EVLAMessage> 

Get the value of all properties (CPs and MPs) on all devices for this MIB:  get *.* 
 
<EVLAMessage location='Antenna 13' timestamp='53198.804811'> 

<device name='device1'> 
<monitor name='mx' type='analog' value='0' /> 
<monitor name='my' type='digital' value='1' /> 
<control name='cx' type='analog' value='12.123'/> 
<control name='cy' type='digital' value='0' /> 

</device> 
<device name='device2'> 

<monitor name='mx' type='analog' value='7.9' /> 
<monitor name='my' type='analog' value='0.4' /> 
<control name='cx' type='analog' value='4.567'/> 
<control name='cz' type='digital' value='0' /> 

</device> 
<device name='MIB'> 
    <monitor name='MIBVERSION' type='analog' value='0.17' /> 
    <monitor name='MODULEVERSION' type='analog' value='0.11' /> 
    <monitor name='SYSMEM' type='analog' value='144368' /> 
    <monitor name='TELNET_S' type='analog' value='4384' /> 
    <monitor name='BugfixCount' type='analog' value='0' /> 
    <monitor name='HeartInterval' type='analog' value='0' /> 
    <monitor name='HeartTime' type='analog' value='0' /> 
    <monitor name='HeartReset' type='analog' value='0' /> 
    <monitor name='SeqMissCmds' type='analog' value='0' /> 
    <monitor name='codeLoader' type='analog' value='0' /> 
    <control name='xmlLoader' type='digital' value='0' /> 
    <control name='reboot' type='digital' value='0' /> 
    <control name='wantArchive' type='digital' value='1' /> 
    <control name='wantScreen' type='digital' value='1' /> 
    <control name='wantObserve' type='digital' value='0' /> 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 6 of 26 

</device> 
</EVLAMessage> 

Get the values of all properties (CPs and MPs) on device1: get device1.* 
<EVLAMessage location='Antenna 13' timestamp='53198.805387'> 

<device name='device1'> 
<monitor name='mx' type='analog' value='0' /> 
<monitor name='my' type='digital' value='1' /> 
<control name='cx' type='analog' value='12.123'/> 
<control name='cy' type='digital' value='0' /> 

</device> 
</EVLAMessage> 

   Get the values of all attributes for the mx property on device1: get device1.mx.* 
<EVLAMessage location='Antenna 13' timestamp='53198.805395'> 

<device name='device1'> 
<monitor name='mx' type='analog' value='0' target='0' 
engr_unit='m' conv_type='NO_CONVERT' slope='1' intercept='0' 
max='100' min='0'  alert_arm='0' alert='0' a_period='600' 
s_period='50' o_period='50' aa_period='300' msg='' /> 

</device> 
</EVLAMessage> 

Get the values of all the max attributes for all properties (CPs and MPs) on device1:  get 
device1.*.max 

 
<EVLAMessage location='Antenna 13' timestamp='53198.805403'> 

<device name='device1'> 
<monitor name='mx' type='analog' max='100' /> 
<control name='cx' type='analog' max='15.68'/> 

</device> 
</EVLAMessage> 

Get the value of one property on device1:  get device1.mx 
 
<EVLAMessage location='Antenna 13' timestamp='53198.805413'> 

<device name='device1'> 
<monitor name='mx' type='analog' value='0' /> 

</device> 
</EVLAMessage> 

Get the value of the same property on all devices that support it:  get *.my 
 
<EVLAMessage location='Antenna 13' timestamp='53198.805500'> 

<device name='device1'> 
<monitor name='my' type='digital' value='1' /> 

</device> 
<device name='device2'> 

<monitor name='my' type='analog' value='0.4' /> 
</device> 

</EVLAMessage> 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 7 of 26 

Get several different values and attributes in one command:   get device2.mx 
device2.mx.max device1.cx.min 

 
<EVLAMessage location='Antenna 13' timestamp='53198.805670'> 

<device name='device2'> 
<monitor name='mx' type='analog' value='7.9' /> 

</device> 
<device name='device2'> 

<monitor name='mx' type='analog' max='240' /> 
</device> 
<device name='device1'> 

<control name='cx' type='analog' min='0' /> 
</device> 

</EVLAMessage> 

Produce an error trying to get a non-existent attribute:  get device1.mx.badattr 
 

<EVLAMessage status='err'> 
  badattr: no such attribute 
</EVLAMessage> 
 
 

6.4 Set 
 

set [@<time>] [-v] {<device>|*}.{<property>|*}[.{<attribute>|*}]={<value>|*} 

The set command instructs the MIB to install new values for device properties and their 
attributes. These three components are collected into a triple using a period (".") as the 
separator. A triple is assigned a value by following it with equals (=) then the value. Spaces 
are not allowed on either side of the equals. One to four triples and their assignments may be 
present, each separated by one or more blanks. If the attribute component is absent the 
value attribute is used. 

See the section 6.2, "Wildcard Operations" for a discussion on the wildcard (asterisk, or *) 
character in a set command. 

See the Table 1. SP Command Qualifiers above for the options that the set command 
supports.   Some more information is given below as well for them. 

 

Set several different values and attributes in one command:   set device2.my.max=40  
device1.mx=5 

Confirm:   get device2.my.max device1.mx 
 
<EVLAMessage location='Antenna 13' timestamp='53198.808726'> 

<device name='device2'> 
<monitor name='my' type='analog' max='40' /> 

</device> 
<device name='device1'> 

<monitor name='mx' type='analog' value='5' /> 
</device> 

</EVLAMessage> 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 8 of 26 

 
 
 
 
 
 
 
[@<time>] 

The moment when this set is to occur is given by the <time> value. If the time format is 
valid but specifies a time that has already past, then the command treatment depends on the 
MIB Framework software build; refer to section 8, "Time-deferred SP Commands" for more 
information.   There are two formats allowed: 

  
A) Modified ISO 8601 UTC time - YYYY-MM-DDTHH:MM:SS.mmm 

Where: 

 YYYY - year, example "2004" 

 MM - month, 01 to 12 

 DD - day of month, 01 to the max day depending on leap year and month  

 T - time type, P for PM, or A for AM 

 HH - hour from 00 to 12 

 MM - minute from 00 to 59 

 SS - second from 00 to 59 

 mmm - millisecond from 000 to 999 

 

B) Modified Julian Date (MJD) time - DDDDD.FFFFFFFF[FFFFFFFFF] 

(MJD = JD - 2400000.5) 

Where: 

 DDDDD - 5 digits of days since Nov 17, 1858 at 00:00:00.00 

 FFFFFFFF - fractional days, 8 digits gives millisecond resolution. 

 

If the @ symbol is specified but the <time> value is missing or invalid then the command will 
not be executed, and an error will be output even if the -v option was not specified. 

Note that the ordering of the @ and -v options are per the command syntax above; reversing 
them will generate a parsing error. 

 
 
[-v] 

 This is the verbose switch as detailed in the qualifiers table. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 9 of 26 

 

6.5 Attribute Lists 

Table 4. Analog MP attributes list 
Attribute Name  Access Type Description 
name Read name of MP property. 
type Read type of monitor point; analog in this case. 
value Read/write current value, engineering units (default attribute).  This is a 

floating point value. 
target Read/write target value for a control loop if needed. 
engr_unit Read units of value, target, max, min, intercept, 

and slope (see Table 8. Engineering Units). 
conv_type Read conversion type to use to create value from raw data; 

slope and intercept could also be used depending on 
the conversion specified.  See Table 9. Analog Monitor 
Conversion Types. 

slope Read/write along with conv_type and intercept determines how 
raw units are converted to engineering units. 

intercept Read/write along with conv_type and slope determines how raw 
units are converted to engineering units. 

max Read/write maximum value in engineering units. 
min Read/write minimum value in engineering units. 
hi_alert_
arm 

Read/write if 1 enables checking value against max; if value > max 
alert counter is incremented. 

lo_alert_
arm 

Read/write if 1 enables checking value against min; if value < min 
alert counter is incremented. 

alert Read 1 if an alert condition (either hi_alert or lo_alert) is active on 
this point. 

hi_alert Read 1 if a high alarm is currently being asserted, else 0. 
lo_alert Read 1 if a low alarm is currently being asserted, else 0. 
a_period Read/write period between archive broadcasts on data port, in 100 ms 

units. 
s_period Read/write period between screen broadcasts on data port, in 100 ms 

units. 
o_period Read/write period between observing broadcasts on data port, in 100 ms 

units. 
aa_period Read/write period between archive broadcasts on data port if the point is 

in alert state, in 100 ms units. 
msg Read/write 47 character string which could be anything the user wants. 

     

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 10 of 26 

Table 5. Digital MP attributes list 
Attribute Name  Access Type Description 
name Read name of MP property. 
type Read type of monitor point; digital in this case. 
value Read/write current value (default attribute).  This can be only 0 or 1. 
alert_arm Read/write if 1 enables checking value against alert_on1; if 

value <> alert_on1 then an alert is declared (set the 
alert attribute to 1). 

alert_on1 Read/write this is the normal, non-alert value of the point.  Deviation 
from this causes alert state to be entered immediately if the 
alert_arm value indicates alerting is desired. 

alert Read 1 if an alert condition is active on this point. 
a_period Read/write period between archive broadcasts on data port, in 100 ms 

units. 
s_period Read/write period between screen broadcasts on data port, in 100 ms 

units.  
o_period Read/write Period between observing broadcasts on data port, in 100 ms 

units. 
aa_period Read/write Period between archive broadcasts on data port if the point is 

in alert state, in 100 ms units. 
msg Read/write 47 character string which could be anything the user wants. 

  



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 11 of 26 

Table 6. Analog CP attributes list 
Attribute Name  Access Type Description 
name Read name of CP property. 
type Read type of control point; analog in this case. 
value Read/write current value, engineering units (default attribute).   This is a 

floating point value. 
dev_type Read device IO type used for communication to the device that 

this point is for (see Table 10 Device Types). 
engr_unit Read units of value, step, max, min, intercept, 

and slope (see Table 8. Engineering Units). 
slope Read/write along with conv_type and intercept determines how 

raw units are converted to engineering units. 
intercept Read/write along with conv_type and slope determines how raw 

units are converted to engineering units. 
p0 Read/write general purpose value for use by functions operating on this 

control point. 
p1 Read/write general purpose value for use by functions operating on this 

control point. 
p2 Read/write general purpose value for use by functions operating on this 

control point. 
p3 Read/write general purpose value for use by functions operating on this 

control point. 
p4 Read/write general purpose value for use by functions operating on this 

control point. 
p5 Read/write general purpose value for use by functions operating on this 

control point. 
p6 Read/write general purpose value for use by functions operating on this 

control point. 
p7 Read/write general purpose value for use by functions operating on this 

control point. 
min Read/write minimum value in engineering units. 
max Read/write maximum value in engineering units. 
step Read/write for control loops, gives maximum engineering value to 

change output by in 1 cycle. 
a_period Read/write period between archive broadcasts on data port, in 100 ms 

units. 
s_period Read/write period between screen broadcasts on data port, in 100 ms 

units. 
o_period Read/write Period between observing broadcasts on data port, in 100 ms 

units. 
aa_period Read/write period between archive broadcasts on data port if the point is 

in alert state, in 100 ms units. 
msg Read/write 47 character string which could be anything the user wants. 

 
 
 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 12 of 26 

Table 7. Digital CP attributes list 
Attribute Name  Access Type Description 
name Read name of CP property. 
type Read type of control point; digital in this case. 
value Read/write current value (default attribute).  This can be 0 or 1. 
dev_type Read device IO type used for communication to the device that this 

point is for (see Table 10 Device Types). 
a_period Read/write period between archive broadcasts on data port, in 100 ms 

units. 
s_period Read/write period between screen broadcasts on data port, in 100 ms 

units. 
o_period Read/write Period between observing broadcasts on data port, in 100 ms 

units. 
aa_period Read/write Period between archive broadcasts on data port if the point is 

in alert state, in 100 ms units. (For future use) 
msg Read/write 47 character string which could be anything the user wants. 

     

 

Table 8. Engineering Units 
Name Symbol Meaning 
UNKNOWN (space) Default, no engineering units. 
VOLTS V Measure of electrical force. 
MILLIVOLTS mV 1/1000th of a Volt. 
AMPS A Measure of electrical current. 
MILLIAMPS mA 1/1000th of an Amp. 
OHMS Ohm Measure of electrical resistance. 
FARADS F Measure of electrical capacitance. 
PICOFARADS PF 1/1,000,000,000,000th of a Farad. 
JOULES J Measure of electrical energy. 
WATTS W Measure of power. 
MILLIWATTS MW 1/1000th of a Watt. 
HERTZ Hz Cycles per second. 
MEGAHERTZ MHz Millions of Hertz. 
GIGAHERTZ GHz Billions of Hertz. 
GAUSS Gauss Measure of magnetic field strength. 
CELSIUS C Measure of temperature, 0 degrees being the 

freezing point of pure water at sea level 
pressure. 

KELVINS K Measure of temperature. 
HUMIDITY Humidity Measure of evaporated water content of air. 
PASCALS Pascal Atmospheric pressure. 
METERS m Measure of length. 
CENTIMETER
S 

cm 1/100th of a Meter. 

MILLIMETER
S 

mm 1/1000th of a Meter. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 13 of 26 

Name Symbol Meaning 
KPH KPH Measurement of speed. 
DEGREES degrees Measurement of rotation 
DEGREESSEC degrees/sec Rate of rotation 
DEGREESMIN degrees/mi

n 
Rate of rotation 

ARCSECOND
S 

arc-sec Measure of rotation 

LITERS l Volume 
NEWTONS N Force 
MJD day Time 
SECONDS second Time 
MPH MPH Speed 
BITFIELD bitfield Typeless field to be output in hexadecimal 

 

Table 9. Analog Monitor Conversion Types 
Conversion Name Symbol Meaning 
NO_CONVERT NO_CONVERT This is the default transform from raw to 

Engineering units.  A module’s specific code 
could provide its own transformation method 
and use this to have the result reported to the 
MP. 

LINEAR LINEAR Use  value = raw*slope+intercept 
POLYNOMIAL POLYNOMIAL Module-specific implementation. 
SIGNED_LINEAR SIGNED_LINEAR Use value = field*slope+intercept 

where field is a signed 2’s compliment 
number derived from a bitfield in the raw 
value.  

 

Table 10 Device Types 
Device name Symbol Description 
    No device associated NULL_DEV No device needed. 
GPIO GPIO MIB parallel I/O port. 
25LC040 EEPROM_25LC040 SPI EEPROM driver. 
TLV2556 ADC_TLV2556 Driver for TLV2556 A/D converter. 
MAX6629-MAX6632 TEMP_MAX66XX Driver for MAX6629-MAX6632 

family of temperature sensors. 
TLV5624 DAC_TLV5624 Driver for Data Acquisition chip. 
DAC716  DAC1_716 Driver for Burr-Brown 16 bit                       

Data Acquisition chip  #1. 
DAC716 DAC2_716 Driver for Burr-Brown 16 bit                       

Data Acquisition chip  #2. 
FPGA/PIC FPGA_INTERFACE_1 P301/ALMA communications driver. 
GPIO ACU_GPIO ACU/FRM-specific GPIO driver. 
Power Supply Control PSC_INTERFACE Driver for PSC interface to D30X. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 14 of 26 

Device name Symbol Description 
various SPI devices T304_DNCVTR T304 downconverter interface driver. 
Data Acquisition Board, 
version 1 and 2 

DAQ_INTERFACE DAQx board protocol driver, used in 
M301. 

AD9852 DDS and 
L301/L302 FPGA 

DDS          Driver for the AD9852 DDS chip and 
FPGA used in the L301 and L302. 

MAX186-MAX188  ADC_MAX18X  SPI driver for A/D converter chips. 
Data Monitor Board DMB_INTERFACE Driver for Data Monitor Board, a.k.a. 

Analog Monitor Board. 
    generic I/O device 1 
(generally, GPIO) 

    MODULE_IO_1 
(module-specific name) 

Generic driver whose name will be 
provided by the implementing 
module code. 

    generic I/O device 2 
(generally, GPIO) 

    MODULE_IO_2 
(module-specific name) 

Generic driver whose name will be 
provided by the implementing 
module code. 

    generic I/O device 3 
(generally, GPIO) 

    MODULE_IO_3 
(module-specific name) 

Generic driver whose name will be 
provided by the implementing 
module code. 

 

 

7 Response Format from the MIB 
All commands are immediately checked for validity before any action is taken. This checking 
does include syntax errors and unknown device, property or attribute names. Failure at this step 
results in no change in status to the MIB or any connected equipment modules.  Syntax errors are 
always reported by both get and set commands, regardless of the absence of the -v option.  
Unknown device, property, and/or attribute names are always reported by the get command, 
and optionally by a set command if the -v option was used.   Finally, a time-deferred set 
command will return an error message when no more time-deferred commands can be accepted, 
regardless of the presence or absence of the -v option.  

All responses, if sent, are in XML format. The outer element is EVLAMessage with three 
optional attributes: status, location and timestamp. For a set command with the –v 
option that was successful the value of the status attribute value is ok. For a get command 
that was successful the location and timestamp attributes are present.   For either 
command, if there was an error, the response will have a status value of err and a brief 
message about the problem will follow.   Here are some examples of failure messages: 

 

If the command is:  get device3^ 

The response is: 
<EVLAMessage status=’err’> 

Illegal character: ^ 
</EVLAMessage> 

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 15 of 26 

If the command is:  get device3.* 

The response is: 
<EVLAMessage status=’err’> 

device3: no such device 
</EVLAMessage> 

 

If the command is:  set device3.* 

The response is: 
<EVLAMessage status=’err’> 

Missing property assignment 
</EVLAMessage> 

 

If the command is:  set -v device3.mx=1 

The response is: 
<EVLAMessage status=’err’> 

device3: no such device 
</EVLAMessage> 

     NOTE: if the -v option was not present, this command would fail but no message would 
     be output. 
 

If the command is:  set device1.mx=1 device2.my=0 device1.my%=45 

The response is: 
<EVLAMessage status=’err’> 

Illegal character: % 
</EVLAMessage> 

 

Additional sub elements will be present within the EVLAMessage element for a successful 
get command, in order to report the queried values. See the discussion for the get command 
for examples of successful responses. 

 

8 Time-deferred SP Commands 
This section discusses in more detail the operation of the set command @ qualifier. 

8.1 Indicating a Time-Deferred Command 
 A set command (only) can have an optional time parameter specified after the set 
command verb.  This time parameter is introduced by the @ character and is assumed to be an 
absolute time in one of two formats.   If a @ character is not detected as the first non-white space 
character after the set command verb, then a time-deferred option cannot be specified for that 
set. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 16 of 26 

8.2 Time-Deferred Command Format 
set @<time> [-v] {<device>|*}.{<property>|*}[.{<attribute>|*}]={<value>|*} ... 

See the description of the set command in section 6.4 for more information on the set command 
format, and in particular the time formats supported for the time-deferred command qualifier. 

8.3 Restrictions on Commands 

8.3.1 Number of set operations 
As per the standard service port command format, there can be no more than 4 trip les (sets of 
device.property[.attribute]=value) specified for each set.  Wildcards can be used and more than 4 
resulting set operations can be performed as a result of that wildcard. 

8.3.2 Time must specify future time 
By default, the software will automatically execute a command that specifies a time that is past 
or too close to the future, rather than discarding or queuing that command.  This behavior is 
selectable at compile time; the same symbol selects the sequencer task's handling of commands 
that have times < current time.  If the default action is not selected the sequencer itself will 
discard a queued command if the time stamp it gets is already past the command's desired 
execution time 

If the default action is not selected, then the time given for the command's execution must be at 
least 2 interrupt events (see below) duration in the future in order to be accepted.   This will 
guarantee the command will be executed; anything less may result in the command getting 
discarded and is not allowed.    

8.4 Command Queuing 
All commands that are received and validated will be queued, with a maximum number of 50 
allowed at any one time.  Exceeding that number will generate an error message back to the 
initiator regardless of the state of the -v option flag.  Likewise any parsing error will generate an 
error message to the initiator with an indication of the problem, if possible.  

Commands are sorted in the queue in time-execution order.  Commands queued to the same 
execution time are sorted in FIFO order. 

8.5 Command Execution 
The commands queued will be executed based on their specified execution time, and the EVLA 
system heartbeat event and heartbeat interval duration. If there is no heartbeat event coming into 
the MIB, the deferred command will be executed based on a simple elapsed time timer event and 
that timer's duration; in the following discussion both of these events (heartbeat and elapsed 
timer) are called "event ". 

A command will be executed if the system calculates that the command's execution time meets 
the following criteria: 

       Current event time <= execution time < (current event time + event interval duration) 

The system supports execution of multiple commands based on one event; each command is 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 17 of 26 

tested in order until the criterion is not met, at which point the sequencer will look for new 
commands and another event. 

Actual execution of the command is done using the same routine employed by the service port's 
set command processing function. 

Regardless of the presence of the -v option in the original command, no feedback for the 
executed command will be sent to any connected service port clients or the serial port. 

 

8.5.1 Command Execution Time Missed 
Base on a compile time symbol's value, the above execution condition can be modified to 
include or exclude commands whose time of execution is < the current time.  If set to 0 (the 
default), the logic for discarding commands based on their time being < current time is disabled, 
and the command will be executed. 

If the symbol's value is not 0, and if the next command in the queue is found to have an 
execution time < current event time, that command will be discarded and an error counter 
incremented.   This error counter is called SeqMissCmds and is available in the MIB logical 
points list regardless of the state of the compile time symbol. 

One possible cause of  a missed execution time would be the MIB's time clock base value 
"leaping" forward in time such that at the previous event time the condition for execution was 
not met, but now at the current event time the clock has passed by that point in time. 

 

8.6 Command History 
All commands executed will be preserved in the free command entry list for as long as possible.   
Their sequence numbers will have their 31st bit set to indicate they were executed. 

All commands that were discarded will be preserved in like manner, with their 30th bit set to 
indicate that they were discarded and not executed. 

 

8.7 Administration of the Queue 
Currently the only administrative function that exists for this MIB feature is a "seq_dump" 
command in the shell, which allows the user to dump out the sequencer task's queue of 
commands.  Options available allow dumping All, Pending, Completed, Missed, or 
Complete&Missed entrie s in the queue.   These options use the sequence number and the bit 
flags in it to determine the state of a command.  This function does lock access to the queue 
while performing its action, so it does interrupt the normal processing of any pending commands 
in the queue. 

       The sequence number is designed to be used as a means to cancel outstanding queued 
commands before they execute, and the entire list could potentially be dumped via the service 
port's get function instead of using the "seq_dump" command. 

 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 18 of 26 

9 Service Port Details 
 
This section describes the internal workings of the service port facility of the MIB in more detail.  
This includes the UDP-based service port interface to the MIB as well as the shell interface to 
the MIB. 
 
There is a set of common service port facility functions which support both the telnet interactive 
shell and the UDP-based service port server implementation.  The service port interface code for 
each of the connection methods basically just has to handle the communications set-up and tear-
down requirements for that connection method. 
  

9.1 Terminology 

 
Besides the terms used in the table 5.2, "Terminology Key", the following are used in this 
section of the document. 

Table 11. Service Port Facility Terms  
Term Meaning 
Command 
line buffer 

This means a string of bytes that will be processed using the 
rules in the first parts of this document, looking for SP 
commands. 

Command This means a service port command as per section 6, 
"Command Format to the MIB". 

Command 
data structure 

This is a set of data items derived from the parsing and 
validation phases of the service port common routines.  These 
data items will either describe a single "Command" or will 
contain an error generated from the parsing of a command or 
string that was supposed to be a command. 

Command 
set 

This is a set of 1 to N "Command data structures" all of which 
were produced from a single "Command line buffer".  A 
command set is sorted in FIFO order. 

  
 

9.2 Service Port Facility Description 

 
This section describes the common service port command handling functions. 
 

9.2.1 Input Handling 

The service port input parser supports the parsing of the command line buffer received from the 
clients of the service port facility.  All of the commands in the command line buffer are parsed 
into a set of intermediate command data structures, with pre-execution validation being 
performed to catch errors up front. 
 
Any errors detected have their associated error messages written into the command data 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 19 of 26 

structure.  This was done because a UDP socket must have its data delivered as a complete 
message, not piecemeal like the TCP socket the shell uses. 
 
All commands detected from a single command line buffer are queued into a command set in 
FIFO order so that when they are executed they will execute in the same order the user or 
program provided them.  
 
If there should not be enough free command data structures to represent the detected commands 
from a command line buffer, then all of the commands in that buffer will be discarded and an 
error message returned to the caller of the command line parsing routine.   That error may or may 
not be presented in turn to the user of the interface. 
 
Once all commands have been detected and stored in the command set, the command set will be 
processed.  See the section on Output Handling below for more information.  
 
The delimiters used for commands are covered in section 4, "Interface Commands". 
 
 
9.2.1.1 Command Limits 
 The software is currently limited to 50 simultaneously active, building, or pending 
execution commands.  Attempts to exceed this number will generate an immediate error message 
back to the shell or UDP server client as appropriate, and all commands that have already been 
detected from that command line buffer will be discarded. 
 
9.2.1.2 No Password Protection 
 There is currently no password protection on the service port for performing commands.   
Any user or program that can connect to the appropriate port on the MIB will be able to issue 
commands and receive responses.  Adding a password requirement should be easy since both the 
shell and the service port server use the same command line parser function. 
 

9.2.2 Output Handling 

As stated previously in the "Input Handling" section the commands in the command line buffer 
are all parsed into command data structures before they are executed.  Some may have error 
messages already written to them, if errors were detected during the parse or validation phase of 
the service port processing. 
 
Once the command detection phase is over the next step depends on the task processing the 
command line buffer.   For the shell, the command set which has been built will be executed 
immediately; for the service port server, the command set will be queued to an execution task 
selected from the pool of execution tasks (see below). 
 
In either case, once the set of commands derived from the command line starts to be processed, a 
buffer of 32000 bytes worth of dynamic memory is allocated for the results of the command set.  
This buffer will then have each command's output written into it sequentially, in the order in 
which the commands were detected and queued into the command set.  Once all of the 
commands have been processed, the resulting output buffer will be written out to the TCP (shell) 
or client UDP (server) socket. 
 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 20 of 26 

Thus, the entire command set found on the command line can produce no more than 31999 bytes 
of output. 
 
Because of the common code being used for the processing of the commands, the output format 
for the shell and the service port server is the same; the data will have carriage return and 
linefeed pairs at the end of each line. 
 
 
9.2.2.1 No Output Length Checking 
Currently, there is no output length checking in the service port facility software.   However, 
during the validation phase of the command parsing it should be possible to do output size 
estimation before the commands are actually executed, and if needed break the resulting outputs 
into smaller portions and/or allocate an appropriately sized dynamic memory buffer for the 
results.  Plans do exist to implement output length checking.  (Note that UDP has a maximum 
output limit of approximately 65000 bytes for a single transmission.) 
 
 
9.2.2.2       Statistics Output 
      The statistics output added to a get command's output when the -v option is given has a 
field for the total number of commands processed by the shell interface as well as the queue 
message processed counts for the service port server execution tasks. 
 
 

9.2.3 Queue Dump Function 

A shell function called "sp_dump" is available to display the contents of the service port 
command data structures queue.  The queue has two components - a free list, and a pending list.  
Most of the time the pending list will appear empty since the commands are processed quickly 
by the execution tasks; the commands that are used will be queued to the free list at the end, 
preserving their information for as long as possible.  Note, however, that the order in which they 
were submitted may not be the same as the ordering in the free list since the multiple execution 
tasks could release some of the command data structures faster than others. 
 
The dump function also supports output of the commands processed and queue messages 
processed statistics for the service port facility. 
 

9.3 Service Port Server Description 

The service port server is comprised of 1 main task which receives data from a UDP port (port 
number 7000), and from 1 to N (N being 3 at the moment) "execution" tasks which actually 
perform the service port commands that are given. 
 

9.3.1 Service Port Server Implementation 

This section describes the service port server implementation using UDP sockets as the 
communication mechanism between client programs and the MIB. 
 
 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 21 of 26 

9.3.2 Service Port Server Task 

This task is blocked on the UDP known port waiting for data to arrive.  It will accept up to 1 
Ethernet MTU (1514 bytes) of input in one message; this is the command line buffer. 
 
The task will immediately check the length of the received buffer against the known minimum 
service port command length (5 bytes currently).  If the length is not within specifications an 
error message is generated back to the client and the task will go back waiting for more data to 
show up. 
 
If the command line buffer is large enough the task will process it using the common service port 
facility command line parsing routine.  See the "Input Handling" section above. 
 
Once a command set has been generated, the entire command set will be queued to one of the 
service port execution tasks.  The tasks are given command sets in a round-robin fashion, with 
preference given to a task which is not currently busy processing a command set. 
 
 

9.4  Execution Tasks 

These tasks are each blocked on their associated operating system queues waiting for a new 
command set to be sent to it.  Each task has its own statistics counter, queued command counter, 
and queue.  Each queue is capable of handling 10 command data sets. 
 
Once a queue message is received by an execution task, it will increment a queue message 
counter and validate the message.   If the message is not valid a serial port message will be 
generated and the count of waiting queued data items is decremented; then the task will return to 
waiting for the next queued message. 
 
If the queue message received is valid, the task will increment a count of valid queue messages 
processed and attempt to acquire the output buffer (see the Output Handling section) for the 
output of the command set, blocking until it succeeds. 
 
Once the buffer is allocated, the command set is given to the service port common command set 
execution routine.  That routine will execute the commands in the set, writing their outputs into 
the output buffer sequentially until all commands have been processed.   Then the entire 
command set is released to the free command data structures queue. 
 
After the command execution routine is finished and returns the resulting output buffer, the 
execution task will send that buffer to the client using the UDP socket information from the 
queue message it received with the command set index.  A new socket will be allocated for each 
such transmission. 
 
Next, the output buffer is released and the number of queued data items waiting to be processed 
will be decremented.  The task will then return to waiting for the next command set from its 
queue. 
 
 
 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 22 of 26 

9.5 Shell Interface 

The shell interface to the MIB is implemented as a function which is called whenever the main 
shell task detects a string of input beginning with either set or get.   The function will further 
process the command line buffer given using the service port common command line processing 
function.  Once the command line has been parsed into command data sets, the shell interface 
function will call the service port common command set execution function for all command sets 
detected. 
 
Each command set will have its output written out before the next command set is processed. 
 
There are no differences between the service port server's input and output and the shell 
interface's input and output, so programs or users could use either one.  However, software client 
process that do not support a human interface are discouraged from using the shell connection. 
 

9.6 Service Port Test Program 

The SendMIBCmd test program on the Linux platform supports both the telnet shell interface 
and the service port server UDP interface to the MIB.   This test program will read each  line 
from a given text file and send it to the MIB given via the interface specified, waiting up to 10 
seconds for a response before it reads the next line from the text file and repeats the process.   
Anything received from the MIB is output to stdout; if the timeout occurs instead a timeout 
message is output. 

This program is written in C and should compile on different operating systems without too 
much modification. 

The syntax of the command is: 

sendmibcmd <MIBaddress>  {UDP|TCP} <filename> 
 

An older version of the SendMIBCmd utility also exists on the Windows platforms; it is 
currently capable of handling the shell interface only and will output the same command every 
so many seconds to the MIB given on its parameter line. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 23 of 26 

 

10 MIB Device Points 
The logical MIB Device supports the following CPs and MPs at the revision level of 0.17.   
Other CPs and MPs may be added in the future; generally none will be deleted.   These are 
provided by the MIB Framework code separately from the MIB's configuration information and 
so are available on all MIBs. 

 

Table 12.  Digital Control Points 

Name Default 
Value 

Description 

xmlLoader 0 Controls XML file loading and shows status from a 
load.   Setting this to 1 enables XML configuration file 
loading into the MIB.   Once the XML file load 
completes, this has to be set to 1 again for another 
XML file load to happen.   The msg attribute will have 
a textual description of the status of the XML loader; 
20 seconds after a XML load completes, the message 
will revert to either "waiting to start" or "accepting 
socket".    

reboot 0 If a set command is performed on this point a soft reset 
of the MIB will be performed; all current memory 
contents will be reloaded from flash. 

wantArchive 1 If 1 then archive data will be sent for those points that 
are configured to do so. 

wantScreen 1 If 1 then screen data will be sent for those points that 
are configured to do so. 

wantObserve 0 If 1 then observe data will be sent for those points that 
are configured to do so. 

 
 

Table 13.  Analog Monitor Points 

Name Default 
Value 

Description 

MIBVERSION 0.17 This is the version number for the MIB Framework 
code.  It is set by data inserted into the MIB software 
build.  The msg attribute will have a text version of 
this, which includes the build date and time. 

MODULEVERSION ? This is the version number for the module’s specific 
software.  It is set by data inserted into the module’s 
software build by the module’s build file.  The msg 
attribute will have a text version of this, which includes 
the version number and whatever else the module 
software desires up to the attribute’s limits. 

SYSMEM 0 This is set to the current available system memory in 
bytes when the get command is performed. 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 24 of 26 

Name Default 
Value 

Description 

TELNET_S 0 This is set to the current available stack of the 
TELNET server when the get command is performed. 

BugfixCount 0 An internal MIB Framework debugging aide. 
HeartInterval 0 This is the heartbeat event interval; the heartbeat is the 

EVLA system timing pulse and is not present on all 
module hardware.  If this is 0 there is no heartbeat on 
this MIB. 

HeartTime 0 The time in MJD of the last heartbeat event. 
HeartReset 0 A count of the number of times the heartbeat rate 

calculation has reset due to errors. 
SeqMissCmds 0 A count of the number of sequencer engine commands 

missed due to time having elapsed already; this is not 
used at present. 

codeLoader 0 This will contain a status value from the MIB code 
loading program.  The program is used to send new 
MIB code to a running MIB and burn it into the Flash 
on the MIB.   The msg attribute will have a textual 
description of the status codes seen here.   In particular 
a MIB should not be rebooted until the msg attribute 
reads either nothing or “Load Completed”. 

 
 
 
 
 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 25 of 26 

11 Appendix 

 

 

Figure 1. MIB Software Diagram 

Cmd line 

Cmd line 

Get or Set 
cmds 

Get or Set 
cmds 

Deferred 
Set cmds 

Deferred 
Set cmds 

UDP port N 
Cmd Set Outputs 

MIB Software Design 
Version 0.17 

August 10, 2004 
C. Frank Helvey 

 

Data Port 

UDP 

Archive               Screen           Alerts 

Service 
Port 

Server 

Telnet 
session 
or shell TCP port 23 

UDP port 7000 Parser 

Module-
specific 
Logical Points 
 
MIB 
Framework 
Logical Points 
 

H/W 
Modules 

H/W ID 
EEPROM 

MIB Framework running in RAM 

Operating 
System  
Services 

Time-
deferred Set 
Commands 

Service 
Port 

Executors 

Set cmds 

Direct 
reads of 
DB tables 

SPI, 
etc 

SPI 

UDP port N 
Parsing error msgs 



MIB Service Port Interface Control Document  Revision 1.2.0 

Page 26 of 26 

 

 
 

MIB Software Design 
Flash Memory Layout 

Revision 0.17 
August 10, 2004 
C. Frank Helvey 

 
 
 

Table 14.  Flash Memory Layout 

 

Address Range Description 

0xA0000000 to 
0xA0070000 

Boot loader program (boot_bootloader 23-Apr-2004 or later) 

0xA0080000 to 
0xA00F0000 

Current image, module software + MIB framework software. 

0xA0100000 to 
0xA0140000 

Spare 

0xA0150000 to 
0xA0170000 

Module specific configuration information in XML format 

0xA0180000 to 
0xA01F0000 

Spare 

0xA0200000 to 
0xA020FFFF 

MAC address 

 


