
 

 
 
 
 

Module Interface Board - MIB 
 
 
 
 
 

Framework Software 
 
 
 
 
 

Version 1.1.0



 

 

Table of Contents 
1 MIB Framework Software ...................................................................................................... 4 

1.1 Overview......................................................................................................................... 4 
1.2 Initialization.................................................................................................................... 4 

1.2.1 Bootstrap ................................................................................................................. 4 
1.2.2 Task Startup ............................................................................................................ 4 
1.2.3 Peripheral Initialization........................................................................................... 5 

1.3 Memory Usage ................................................................................................................ 5 
1.4 Data Structures (Logical Points)..................................................................................... 8 
1.5 Points Monitoring ........................................................................................................... 8 
1.6 Alert Handling................................................................................................................. 9 
1.7 Time ................................................................................................................................ 9 

1.7.1 Nucleus System Timer............................................................................................ 9 
1.7.2 Wall Clock Time ................................................................................................... 10 

1.7.2.1 Network Time Protocol..................................................................................... 11 
1.7.2.2 MIB Procedure for Acquiring Initial Time ....................................................... 11 
1.7.2.3 Heartbeat Timing Interrupt ............................................................................... 12 
1.7.2.4 MIB Calculation of Wall Clock Time .............................................................. 13 

1.7.3 High Resolution Timer Support ............................................................................ 13 
1.8 Software Upgrades ........................................................................................................ 14 
1.9 Commands .................................................................................................................... 15 
1.10 Data Logging................................................................................................................. 15 
1.11 Reliability...................................................................................................................... 16 

2 Module Specific Software..................................................................................................... 16 
Appendix 1 Development Environment ................................................................................... 17 

Appendix 1.1 General ............................................................................................................... 17 
Appendix 1.2 MIB Setup .......................................................................................................... 17 
Appendix 1.3 Windows Laptop Setup ...................................................................................... 17 
Appendix 1.4 HiTOP Debugger Setup ..................................................................................... 18 
Appendix 1.5 Software organization ........................................................................................ 19 
Appendix 1.6 Software development........................................................................................ 19 

Appendix 2 Troubleshooting .................................................................................................... 20 
Known Tasking Compiler Bugs ................................................................................................ 20 

Appendix 3 XML File Format Description .............................................................................. 21 
Appendix 3.1 Introduction........................................................................................................ 21 
Appendix 3.2 Basic File Structure ............................................................................................ 21 

 
 



 

Revision History 
Revision Date Author(s) Description of Changes 

1.0.0 November 11, 2003 
 

Elwood C. Downey Original version. 

1.1.0 September 16, 2004 Pete Whiteis Updated to reflect actual implementation 
of MIB Framework and change 
formatting.  Implemented document 
revision number as document property 
"REVISIONLEVEL" which is accessed 
through the File->Property->Custom 
menu.  

 



MIB Software Development and Overview      Revision 1.1.0 

Page 4 of 26 

 

1 MIB Framework Software 

1.1 Overview 
All MIB software falls into three broad categories: Systems Software, the MIB Framework 
Software, and Module-Specific Software. 

The Systems Software includes the Nucleus RTOS, the Nucleus NET network stack, and the 
Nucleus Shell.  

Nucleus OS is a priority based, real-time, small memory OS marketed by Accelerated 
Technologies Inc.   It is sold as a standalone OS with the option of adding on support packages 
for Network Protocols, File Systems, etc.   It was selected in part, due to its small memory 
footprint, and because of ATI’s experience with the TriCore architecture, of which the TC11IB is  
an example.    

The MIB Framework Software was developed in order to provide a common Monitor and 
Control software platform that would facilitate rapid software development for a wide variety of 
hardware modules.   Several requirements used in defining the Framework were:  

1) SPI would be the primary means of communication with module electronics.    

2) Ethernet would be the sole means of communication between the MIB and the outside 
world 

3) MIB software would run entirely out of internal memory. 

4) MIB software should support software upgrades over Ethernet. 

The Framework software can be used standalone to provide M&C services for the simple 
hardware modules, and can be easily customized to support the needs of more complex modules. 

1.2 Initialization 

1.2.1 Bootstrap 
When a MIB reset occurs, the MIB TC11IB processor will perform its first instruction fetch from 
address 0xA0000000, otherwise know as the ‘reset vector’.   This fetch will execute the boot 
loader located at this address.   The boot loader will setup the critical TC11IB registers including 
those used for interrupt and trap handling, memory configuration, and the system timer interrupt.   
Next, the MIB image (containing both application and Nucleus OS) is copied from Flash to 
internal memory and executed, resulting in an initialization of the Nucleus OS.       

1.2.2 Task Startup 
After Nucleus initialization is complete, a user application startup routine named 
‘Application_Initialize’ is called.  The purpose of the ‘Application_Initialize’ routine is to define 



MIB Software Development and Overview      Revision 1.1.0 

Page 5 of 26 

the various Tasks that will be managed by the Nucleus OS.   These tasks, their stack sizes, and 
priorities are defined in a table named ‘Task_Startup_List’.    Once ‘Application_Initialize’ 
completes, the Nucleus OS will begin scheduling these Tasks.        

1.2.3 Peripheral Initialization 
Two peripheral components critical to the operation of the MIB Framework software are the SPI 
controller, and Ethernet stack.    

SPI initialization is implemented in a task named ‘Ptsmon_Task’.   When SPI initialization is 
successful, a software synchronization flag is released, which allows the ‘netIF_Init_Task’ to 
load the Ethernet driver, and initialize the TCP/IP stack.    

When the Ethernet stack initializes it attempts to use an IP address obtained from a SPI EPROM 
device known as the slot-ID EPROM.   The slot-ID EPROM is a memory chip that resides on the 
back of the antenna module racks, and serves as 1) a slot identifier for the rack, and 2) the source 
for the IP address of the modules in a rack.   Network Gateway and DNS addresses are stored in 
the slot-ID EPROM as well.  If the network startup routine detects a ‘0x0A’ (first byte of our 
10.xx.xx.xx network) in the first byte of the slot-ID EPROM, it assumes that the EPROM 
contains valid IP addresses and uses them to configure the TCP/IP stack with a static IP address.   
If the network startup routine does not detect a properly programmed slot-ID EPROM, it will use 
DHCP to obtain an IP address for the MIB.  In either case, a Domain Name Server (DNS) will 
associate a name with the MIB’s IP address.  For MIB’s that use DHCP, the name given will be 
in the form ‘evla-mib-nn’ where ‘nn’ is the last byte of the MIB’s MAC address.   MIB’s using 
slot-ID base addressing (static), will have DNS entries that conform to those described in Wayne 
Koski’s document titled ‘EVLA Hardware Networking Specification’, document number 
A23010N0003. 

1.3 Memory Usage    
The MIB software makes use of three different memory regions, each of which is distinct from 
the others, both physically and functionally.     

EDRAM – Begins at address 0xC0000000 and contains 512Kbytes of storage.   This region is 
internal to the TC11IB and is functionally dedicated to program code.   The MIB program image 
executes entirely out of EDRAM in order to eliminate RFI activity normally associated with 
CPU fetches from external memory.  The current MIB executable image size is approximately 
225Kbytes, leaving 56% free space in EDRAM (size varies with module type). 

ComDRAM – is located at address 0xBFE00000 and contains 1Mbyte memory region dedicated 
to data storage.  Both static memory regions pre-allocated at link time and memory regions 
allocated dynamically during program execution reside in ComDRAM.   The MIB application 
creates three different memory pools dedicated to dynamic memory needs.   NETMEM is a 
161Kbyte pool used exclusively for handling requests for Ethernet Transmit and Receive buffers.  
The SYSMEM pool dedicates 300Kbytes of dynamic memory for Nucleus and application 
requirements.  LOADMEM is a 390Kbyte pool dedicated to loading new images and XML points 
configuration files.    The LOADMEM pool size will support either a program image load of 



MIB Software Development and Overview      Revision 1.1.0 

Page 6 of 26 

390Kbytes, or an XML Points Configuration file load of up to 290 Logical Points. 

Flash Memory - is located at 0xA0000000 and contains 8Mbytes of non-volatile memory.   The 
MIB application uses a Table Of Contents scheme to assign flash memory sectors to different 
categories of code and data storage.   Current flash sector assignments are defined in app_init.c 
and are as follows: 

Flash Sector                   Content   

0-7 Boot Loader Image 

8-15 Program Image 

16-20 Spare sectors 

21-23 XML Configuration file 

24-31 Spare sectors 

32                                            MAC address 



MIB Software Development and Overview      Revision 1.1.0 

Page 7 of 26 

 
 

Figure 1 Map of flash memory usage 



MIB Software Development and Overview      Revision 1.1.0 

Page 8 of 26 

1.4 Data Structures (Logical Points) 
From the point of view of a client connecting to the MIB, all functionality is cast in terms of 
Monitor and Control points, referred to collectively as Logical Points. The term Logical also 
refers to the fact that the specific module to which the MIB is connected also uses a  notion of 
physical Monitor and Control points that are not necessarily mapped to those points visible 
outside the MIB.  

The MIB always connects physically to only one module at a time. However, some modules can 
best be thought of as consisting of distinct functions. The MIB presents these functions as 
Devices and associates a set of Logical Points with exactly one Device.  No Logical Point is ever 
associated with more than one Device within a module.  The MIB also presents itself as a device, 
whose device name is “MIB”. 

Monitor Points are basically read-only. Their value reflects some detail of module state. Control 
Points are basically write-only. Setting a Control Point to a value causes something to happen.  

Monitor and Control Points come in two flavors: Analog and Digital. Analog Monitor points 
have a floating-point value (double width) and include attributes that facilitate scaling raw data 
to engineering units, data logging intervals, and alert detection. Digital Monitor points have a 
unary value, and contain an attribute that specifies either high or low transition alerts. 

All Monitor and Control Points are internally represented by a global ‘C’ language data structure 
named ‘Logical_Points’.  Any MIB application that wishes to access information in the 
Logical_Points database simply maps to it and reads from or writes to the attributes of interest.    

Initialization of the ‘Logical_Points’ database occurs when the MIB application initializes and 
parses an XML-based points configuration file, usually known as logical_points.xml.    This 
configuration file is stored in MIB flash memory and can be changed and reloaded during 
runtime.   Rebooting the MIB will cause the points configuration change to take effect.   Detailed 
information covering the format of the points configuration file is presented in the document 
titled ‘XML_file_format_description.txt’ (see Appendix 3).  

1.5 Points Monitoring 
The Monitor Points within the ‘Logical_Points’ database are periodically updated in order to 
provide monitor data and alerts in a timely manner.   The source of a Monitor Point is usually 
(but not limited to) a hardware device that is polled for raw data, converted to engineering units, 
and stored in ‘Logical_Points’.     

The details about a monitored hardware device, its access mechanism (e.g. SPI, GPIO, etc), and 
monitor rate are contained within a data structure named ‘Raw_Monitor_Points’.  The 
‘Raw_Monitor_Points’ database exists as a data entity separate from the ‘Logical_Points’ 
database in order to hide the quirks of the hardware interface from the remainder of the system.    
This database is initialized by a table of definitions within the ptsmon_usr_init.c file.   Unlike 
data in ‘Logical_Points’, the data within Raw_Monitor_Points is fixed at compilation time. 

The majority of the implementation for points monitoring is contained in ptsmon.c, within a task 
named ‘Ptsmon_Task’.  The ‘Ptsmon_Task’ is run off a 10Hz system timer and periodically 



MIB Software Development and Overview      Revision 1.1.0 

Page 9 of 26 

executes the following sequence: 

- Find next point defined in ‘Raw_Monitor_Points’. Read the corresponding hardware 
device 

- Unpack raw data into one or more (up to 16) Logical Points.  

- Convert to engineering units 

- Flag any out-of-band data. 

- Log data to archive 

The ‘Logical_Points’ database contains the attributes used for the data conversion, alert 
detection, and data logging steps.   These attributes are accessible through the service port, and 
may be modified at runtime.           

1.6 Alert Handling    

Alerts are defined as any monitored, out-of-range data that would be of interest to the user.   The 
alert mechanism differs somewhat between Analog Monitor and Digital Monitors.  Typically, an 
Analog Monitor point will generate an alert when its value goes above or below a limit for a 
specified period of time.    Digital Monitor points will generate alerts when their value diverges 
from their normal value as given in one of their attributes.   In either case, when an alert 
condition is present, or cleared, an asynchronous message is sent over the network indicating 
alert status of the point, along with its value.   The message for in alert and alert cleared is 
generated exactly once.    

Attributes within the ‘Logical_Points’ database can enable or disable alerts for a given monitor 
point, as well as establish the conditions under which an alert occurs.  These attributes are 
initialized from the XML points configuration file and can be modified during runtime as well. 

See the document “MIB Data Port ICD” for more information on alert detection and message 
generation. 

 

1.7 Time 
This section will discuss the use of time in the MIB from both the operating system perspective 
and the MIB Framework’s perspective. 

1.7.1 Nucleus System Timer 
The Nucleus OS sets up the first timer (T0) on the first of the two General Purpose Timer Units 
(GPTUs) in the TC11IB processor for its OS timer.   This timer is set up to generate an interrupt 
every 10ms (e.g., it runs at 100Hz).   The interrupt is then processed by the OS’ timer handling 
routines in order to perform all operating system functions that require time – this includes all of 
the Nucleus OS functions that have a timeout parameter as well as user-defined timers.    This 
timer is purely an interval timer, and runs off the system’s main oscillator at 48Mhz; as such it 



MIB Software Development and Overview      Revision 1.1.0 

Page 10 of 26 

will tend to drift. 

1.7.2 Wall Clock Time 
The Nucleus OS does not provide any wall clock time tracking.   The OS clock is used purely as 
an interval timer and can drift. 

 The TC11IB provides another timer called the system timer which is a free running 56 bit 
counter that increments at the speed of the main oscillator (48Mhz).   The clock can track time 
for up to 47 years between reboots of the TC11IB, but at every reboot of the TC11IB the system 
clock starts at 0 and increments up from there.   (See the TC11IB documentation from Infineon 
for more information).  This timer will not provide wall clock time by itself, but since it is not 
subject to interruption it does provide a good delta time from the time the MIB rebooted. 

The MIB Framework implements the facility required to track wall clock time.   The routines 
found in timeStamp.c provide the rest of the Framework code and the module-specific code the 
ability to get the current wall clock time in Modified Julian Date (MJD) format, as well as 
manage the wall clock time facility and get some useful information about it for the Service Port 
to display (see the MIB Device Points section of the MIB’s Service Port ICD for more 
information on those points).  The system timer is accessed via a routine in this same module so 
that it will be presented in units of days instead of clock ticks; this hides the hardware 
implementation of the system timer from the rest of the code, and allows the resulting value to be 
added or subtracted from the MJD values used in the rest of the code.  

NOTE 

Whenever the value of the system timer is referenced in this section, the actual value being used 
is the value in units of days returned by this function. 

The MIB’s wall clock time is a double float value representing the number of days since 
November 17, 1858 at 00:00:00.00 Greenwich Mean Time (GMT).  It’s called a Modified Julian 
Date because that time is precisely 2,400,000.5 days since the start of the Julian calendar at noon 
on January 1, 4713 BC.  MJD is used primarily in astronomy. 

The Julian calendar was proposed by J. J. Scaliger in 1583, so the name for this system derived 
from Julius Scaliger not Julius Caesar.  Scaliger defined Day One as a day when three 
calendrical cycles converged.  The first cycle was the 28-year period over which the Julian 
calendar repeats days of the week (the so-called solar number).  After 28 years, all the dates fall 
on the same days of the week, so one need only buy 28 calendars.  (Note that since the Gregorian 
calendar was adopted the calendar now takes 400 years to repeat.)  The second was the 19 year 
golden number cycle over which phases of the moon almost land on the same dates of the year. 
The third cycle was the 15-year ancient Roman tax cycle of Emperor Constantine (the so-called 
indiction).  Scaliger picked January 1, 4713 BC on the Julian calendar (of Julius Caesar) as Day 
One.  (Definition of the Julian Date courtesy Eric W. Weisstein’s astronomyWeb page at 
http://scienceworld.wolfram.com/astronomy/JulianDate.html). 

The MIB determines what the actual wall clock time is by using the Network Time Protocol 
(NTP) to get a wall clock time value to provide a base time.   It then can use the elapsed clock 



MIB Software Development and Overview      Revision 1.1.0 

Page 11 of 26 

ticks represented by the TC11IB’s system timer as an offset from that time.  The code module 
time_client.c contains the software and a task routine that performs the initial time request 
(discussed below) and the handling of NTP messages.   That code will use routines in the 
timeStamp.c module to manage the base time for the time stamping function. 

NOTE 

Until the MIB receives the base wall clock time from a NTP message, it will always return a 
time value of 0.0 as the current time. 

1.7.2.1 Network Time Protocol 
This protocol, also called NTP for short, is used on the Internet to provide reliable wall clock 
time to systems that require it.   The originator of the NTP messages is some server or other 
device that has a highly accurate clock, usually synchronized to some highly accurate time 
source such as the Global Positioning System (GPS) or a maser.   This server runs the NTP 
server software that allows it to send NTP messages to devices connected to the network that 
request them, as well as periodically (approximately every 64 seconds) multicasting the current 
time over the NTP multicast group ntp.mcast.net. 
 

1.7.2.2 MIB Procedure for Acquiring Initial Time 
The MIB has no idea of the current wall clock time when it first boots.   In order to obtain the 
current wall clock time, the Framework code will start a task called “time_client” which is in the 
time_client.c module.  That task’s first action will be to try to resolve the MIB’s own TCP/IP 
name by using reverse name lookup and the MIB’s assigned IP address.   If this completes, it 
will use the network portion of the returned name, and replace the MIB’s name with “timehost”, 
which is the name of the time server in the NRAO networks.  This procedure will handle a MIB 
at the AOC or at the VLA site.  In any other location a MIB would have to supply a DNS entry 
in order to have its initial time request sent.   Should the attempt at getting the MIB’s TCP/IP 
name fail, the task will retry the operation in 5 seconds, and will continue to retry the operation 
until it completes. 
 
Once the MIB has the node name constructed it will use it to obtain the TCP/IP address of the 
time server by using the DNS function NU_Get_Host_By_Name().  If this step does not 
complete, the task will again loop over the entire process after waiting 5 seconds. 
 
If it does complete the task will set up its socket structures so it can receive UDP messages, and 
join the NTP multicast group so that it can receive NTP multicast messages.  It will then send a 
NTP time request using a UDP socket to the “timehost” server whose name it resolved above. 
 
At this point, the task will wait on the NTP incoming message socket and a timeout for 10 
seconds.   If no NTP message is received in 10 seconds, the task will once again send out the 
NTP time request to the “timehost” server.  However, if the task should receive a NTP time 
message (either a multicast message or the response to its request), it will process that message 
and no longer wait on the socket plus a 10 second timeout.   Instead it will just wait on the socket 



MIB Software Development and Overview      Revision 1.1.0 

Page 12 of 26 

for more NTP messages. 
 
Once an NTP message is received, the task will take the NTP time in the message and convert it 
to a MJD time value.   It will then call a routine in the timeStamp.c module to store the new time 
into an 4 position array of received times; that routine will scan the existing entries and this new 
one and determine which one more closely approximates the time that the MIB rebooted.   It 
does this by taking the time values and subtracting the value of the MIB’s system timer at the 
moment that time message was received; whichever time entry produces the smallest value is the 
one picked for the base time of the system, and the approximated MIB reboot time is stored as 
the base time for the system (see the discussion on the procedure for calculating time values). 
 
The 4 positions in the array are overwritten, oldest entry first, once the array is full.  
 

1.7.2.3 Heartbeat Timing Interrupt 
The MIB hardware and Framework software for time supports an optional external interrupt 
which is used to provide time synchronization in the antenna array.   Currently this is the 19.2Hz 
interrupt that the VLA uses; it can be different from that, as long as it is in units of 0.1 Hz.  Some 
MIBs may get a different frequency pulse (such as a 1 PPS signal in the L353); others will not 
have any heartbeat pulse at all. 
 
The MIB Framework always sets up the heartbeat timer ISR and the corresponding support 
structures to insure the heartbeat interrupt will function if it is present.  This interrupt will also 
drive a Nucleus event flag so that any module-specific or Framework task that requires 
synchronization to the heartbeat can block on the event flag until the heartbeat occurs.   This 
event flag is set and reset within the HISR routine that handles the heartbeat interrupt. 
 
The Framework code will store the wall clock time of the heartbeat interrupt for use by the time 
stamping function.   This wall clock time is an MJD value, initially 0.0, which the MIB will 
determine by taking the approximated reboot base time (see above) it is using and add the value 
of the system timer at the moment the interrupt occurred.   It will then subtract off the days value 
to give the fraction of a day which should have elapsed, and calculate the integral number of 
interrupts that should have happened using the interrupt rate in order to get to that time, rounding 
the result up if required.   Then, a new approximated reboot time is calculated by adding that 
number of interrupt times to the day value, and subtracting the value of the system timer at the 
moment the interrupt occurred. 
 
Note that this can only be done once the MIB has determined the heartbeat interrupt rate; until 
then this calculation is skipped.   The currently used heartbeat rate is shown in the heartRate 
monitor point of the MIB device itself. 
 
Also, if the heartbeat rate calculation does not agree with the previously calculated value that is 
being used, an error counter is incremented; if that error count gets to 10, the current heartbeat 
rate is no longer used and the MIB will recalculate the rate.   A count of such recalculations is 



MIB Software Development and Overview      Revision 1.1.0 

Page 13 of 26 

kept in the heartReset monitor point of the MIB device itself. 

1.7.2.4 MIB Calculation of Wall Clock Time 
As stated previously, until the MIB receives the wall clock time for its base time from an NTP 
message it will always report the time as being 0.0.   Once that base time is received, the MIB 
will report the time by performing the following steps. 
 
First, the code determines if there is a system heartbeat interrupt present.   It does this by looking 
at the heartbeat interrupt interval; should that be 0 there is no heartbeat coming into the MIB or 
its rate is not known at present, and thus the approximate reboot time as calculated by the NTP 
time handling routine is used as the base time.  If that rate is not equal to 0, then the approximate 
reboot time as calculated in the heartbeat interrupt handling (see above) is used as the base time. 
 
Second, the current value of the system timer is captured, and added to the base time selected in 
the first step by converting it to a value in units of days.   Since the system timer is incrementing 
at the rate of 48 million per second, this means it must be divided by 48 million and then 
multiplied by 86400 seconds/day. 
 
Lastly, the resulting time is returned to the caller as a MJD value. 
 

1.7.3 High Resolution Timer Support 
The MIB Framework provides a high-resolution elapsed time facility, which can handle elapsed 
times of a very short duration (currently, 50us or more).  This capability was implemented 
because the Nucleus OS timer granularity of 10ms is much too long for some applications. 
 
This facility makes use of the rest of the timers contained in the TC11IB’s GPTU 0 and GPTU 1 
modules.   If you recall, Nucleus itself is using the first timer (T0) in GPTU 0 for the OS timer.  
This leaves two timers (T1 and T2) in GPTU 0 and three (T0 to T2) in GPTU 1.  All of these 
timers are used by the high-resolution timer facility; and GPTU 1 T0 is split into two timers of 
16 bits each. 
 
The facility’s timeouts are expressed as unsigned 32 bit integer values representing the number 
of nanoseconds of delay desired.   This means that the maximum delay is about 4.2 seconds.  The 
value will be adjusted to the minimum high-resolution timer value of 50us if it is lower than that 
when the routine is called to get a timer.   No error status will be returned in that case; the 
elapsed time value is simply changed.   The elapsed time values are in turn converted into a 
number of clock ticks required to represent them, rounding normally.   The clock tick is the 
system clock at 48Mhz; there is a hardware bug in the GPTU modules that prevents the use of 
any slower clock tick. 
 
Two methods of elapsed timing are supported by this facility.   The first is an implementation of 
a sleep routine which can be called like NU_Sleep() in order for a task to do sub-10ms delays.   
The function will find an available high-resolution timer, configure it with the given timeout, 



MIB Software Development and Overview      Revision 1.1.0 

Page 14 of 26 

start it, and then block the calling task on the event flag for that timer.   Once the timer expires 
and the task again gets the CPU, the routine will stop the timer and release it back to the timer 
pool. 
 
The other method of using the elapsed timers is to call the timer allocation routine to get a timer, 
then set that timer up and start it.   Once started, any number of tasks can wait on that timer’s 
event flag for the next timer expiration event by using the supplied high resolution timer event 
routine, and perform whatever actions are required by the application.   The timer will continue 
to run and set/reset the event flags until it is stopped. 
 
In addition to the event flag, the facility also supports a callback routine that can be assigned to a 
timer.   This routine is called at the ISR level when the timer expires; as such great care must be 
taken by the application developer to avoid using Nucleus functions that do not work at ISR level 
(see the Nucleus documentation’s Interrupts section for a discussion of that). 
 

1.8 Software Upgrades 
The remote location of MIBs has led to the need for a remote software upgrade capability in the 
MIB framework software.   This capability allows one to use a simple workstation client to 
download both program code and point configuration files to a MIB from any workstation on the 
EVLA network.    The MIB application that receives code/data files was written to ensure the 
amount of time spent erasing and reprogramming flash was minimal.  When a code/data load is 
initiated, the entire download file is read into RAM over a TCP/IP socket and validated prior to 
erasing and reprogramming of Flash Memory sectors, thus reducing the risk of having a null-
image MIB resulting from power or network dropouts. 

The procedure for upgrading the MIB’s point configuration file is as follows: 

- The point configuration file must be in XML format and conform to the description given 
in the document ‘XML_file_format_descrip tion.txt’.   

- The XML configuration file load must be done on a Windows laptop from within the 
Cygwin environment.   

- Invoke the XML configuration file loader client by the command: 
NRAO/EVLA/MIB/Tools/netloadflash/netloadflash [MIB IP or DNS name] filename 

- The netloadflash client will Telnet into the MIB and issue the command ‘set 
MIB.xmlLoader=1’.  This releases the internal file upgrade lockout to allow the XML 
configuration file to be accepted by the XML loader server on the MIB. 

- Progress can be monitored by the MIB command ‘get MIB.xmlloader.msg’.  Under 
normal, successful loading conditions, the MIB will reply back with “xmlloader-I-
accepting socket”, “xmlloader-I-reading socket for XML data”, “xmlloader-I-done 
reading, shutdown server”, “xmlloader-I- flash prep”, “xmlloader-I-burn xml”, 
“xmlloader-I-finished”, and “xmlloader-I-waiting to start”.   Typically, the messages 
change so fast that only the “xmlloader-I-finished” message is seen; it will stay there for 



MIB Software Development and Overview      Revision 1.1.0 

Page 15 of 26 

20 seconds before the “xmlloader-I-waiting to start” message is displayed.  Any other 
response will indicate a problem with the loading sequence. 

 

The procedure for upgrading new code is as follows: 

- For program loads, the file must be in Motorola S-Record file format, which is generated 
as a result of the software build.   

- Invoke the loader client by the command: 
NRAO/EVLA/MIB/Tools/netloadflash/netloadflash [MIB IP or DNS name] filename     
[-b(for program code)].  When code loading, the client may appear to hang for about 20-
30 seconds.   This is normal due to the fact a 1MB+ file is being network loaded to the 
MIB.   

- Progress can be monitored by the MIB command ‘get MIB.codeloader.msg’.  The MIB 
will reply back with ‘SREC-I-Saving Code’, ‘SREC-I-Load Complete’, or ‘SREC-I-OK’. 
Any other response will indicate a problem with the loading sequence.   

1.9 Commands 

Commands can be sent to the MIB by way of Telnet or UDP messages to a logical I/O channel 
known as the ‘service port’.    The Telnet interface to the service port is intended for human 
interaction with the MIB, and therefore contains a simple command menu, and limited command 
recall capability.   The number of simultaneous Telnet clients supported by a MIB is limited to 
two in order to prevent context block exhaustion.  The UPD interface is intended for machine to 
MIB interaction, and can support up to 3 simultaneous clients.  Any clients that are idle for a 
period of more than 1 hour are disconnected in order to prevent stacking of server tasks that 
would lead to resource exhaustion.     

The two basic commands supported by the MIB are Get and Set. The Get command 
basically scans the Logical_Points array for entries that match a query pattern and forms a 
response of current values in an XML format. Set performs a similar scan but can set new 
values for logical points. 

An exhaustive discussion of the service port, its use, and constraints can be found in the 
document MIB Service Port ICD.   

1.10  Data Logging 

The data port broadcasts UDP packets of MIB Monitor Points. These are broken into the three 
categories called Alert, Archive, and Screen. Packets are transmitted on an event basis for the 
Alerts and on a periodic basis for the others. The period can be set separately for each category 
and each MP.  

The format of the Data port packets is XML. It is the same as the format of the responses from 
the Service Port. 

See the MIB Data Port ICD document for more details on the Data Port and data logging. 



MIB Software Development and Overview      Revision 1.1.0 

Page 16 of 26 

1.11  Reliability 
To ensure high availability, the MIB’s must have a means of recovering from catastrophic 
software failure.  These failures are defined here as trapping a software exception (invalid 
memory access, divide by zero, etc), or falling into a hard CPU loop which would prevent 
operation of the OS scheduler.    

In order to recover from these failures, the MIB Framework makes use of the TC11IB’s 
watchdog timer facility.    The watchdog timer is clocked by the 48MHz system clock and will 
generate 1) a Non-Maskable Interrupt (NMI) and 2) a Watchdog Reset, if not serviced within a 
timeout period, defined as 5 times the Heartbeat interval (currently 1 second). 

Servicing the watchdog timer is done within a low priority task known as the Heartbeat Task.   
The Heartbeat Task executes at a 1 Hz interval, blinking the MIB Test LED and servicing the 
watchdog timer.   Any processing loops that prevent the Heartbeat Task from running for  the 
duration of a watchdog timeout period will result in a MIB reboot.   

In order to trace the root cause of a MIB reset, four counters have been implemented as Monitor 
Points within the MIB device.  These counters keep track of the number of times a Watchdog, 
Hardware, Software, or Power-On reset has occurred.  The counters are updated by reading the 
Reset Status register on application startup, incrementing the appropriate counter, and saving its 
value to Non-Volatile EPROM.    The reset counters can be cleared at any time by setting the 
MIB control point ‘ClrResetCnts’ to 1.  

 
Figure 2 

2 Module Specific Software 
Software specific to a hardware module is segregated from the MIB Framework software by 
location in a directory named after the module (e.g. NRAO/EVLA/MIB/src/L304).    At a 
minimum, there are three ‘C’ language files that implement module specific logic.   
Init_Devices.c, contains calls to initialize any hardware devices not used by the MIB framework 
software.  Ptsmon_Usr_Init.c contains a table named Raw_Monitor_Points that defines the 
module specific hardware devices to be monitored during runtime.  Module_Specific_Routines.c 
define application software ‘plug- ins’ that are invoked from the MIB Framework software as 
part of its execution loop.  These ‘plug- ins’ include initialization routines, version identification, 



MIB Software Development and Overview      Revision 1.1.0 

Page 17 of 26 

debug routines, and IO routines, for a given module.  

A build in a module directory will invoke the module specific Makefile, and subsequently, the 
MIB Framework Makefile.   The binaries generated contain the name of their module source 
directory, and are copied to the network directory: /home/software/evla/MIB/bin, for public 
access.   

Appendix 1 Development Environment 

Appendix 1.1         General 

The MIB development environment consists of a Windows 2000 laptop with the HiTOP 
embedded device debugger hardware and software system and the Tasking C/C++ cross 
compiler tool chain by Altium. We have elected to use the Cygwin UNIX-like environment for 
the editing and build process. The MIB processor is an Infineon TC11B. The real-time embedded 
operating system is Nucleus by Accelerated Technology. 

Appendix 1.2         MIB Setup 

Check the SW1 boot switches on the bottom of the MIB and make sure they are set as follows: 
1-On 2-On 3-Off 4-Off.   This ensures the MIB will attempt a power-on bootstrap from external 
RAM. 

If using the auxiliary development baseboard, connect the MIB to the top of the board and 
connect an RS232 cable between the DB9 labeled ASC and COM1 on laptop. The 
communication parameters are 57600 baud 8-N-1. Window's HyperTerminal is known to work 
with this configuration. 

Connect the fiber Ethernet to the MIB and connect power from a 5v supply. Once the MIB is 
running, it is accessible on the internal aoc.nrao.edu LAN with DNS name evla-mib-N where N 
is the last hex digit of the MIB MAC address (dropping any leading zeroes).  The MIB MAC 
address is printed on the fiber connector.  For example, a MIB with a MAC address of 00-0C-69-
00-02 would have a DNS name of "evla-mib-2". 

Connect the HiTEX emulator interface to the MIB using ribbon cable to J2 (match pins-1). 
Connect Ethernet and power. 

Appendix 1.3         Windows Laptop Setup 

Note: To perform the next steps, you will need to be a local Administrator for the laptop. Check 
with the Desktop group. 

On the laptop, go to cygwin.com, download and run their setup file, connect to nasa.gov, 
download All-Install to d:\temp, run setup again to install to d:\cygwin. 

Create directory d:\cyghome 

Create file d:\cyghome\cygwin.bat containing the following : 



MIB Software Development and Overview      Revision 1.1.0 

Page 18 of 26 

if not exist z: net use z: \\filehost\evla 
d:\cygwin\bin\bash --login -c 'HOME=/cygdrive/d/cyghome; cd; 
exec csh -c "exec startx"' 

Create file d:\cyghome\.xinitrc (note leading dot) containing: 

xsetroot -solid '#225' 
xterm -geometry +10+10 -e /bin/csh & 
xterm -geometry +800+10 -e /bin/csh & 
twm & 
exec xclock -geometry 70x70-1+1 

Note: this is set up using the 'C shell'.  Replace '/bin/csh' with '/bin/bash' to use the Bash shell 
instead, and copy the   .bashrc   file from the "asg" share on "filehost", in folder 
evla/Dev_Shell_scripts   to   d:\cyghome to get command shortcuts' and 
environment  variables' definitions. 

 

If not copied above, create the file d:\cyghome\.bashrc (note leading dot) containing: 

setenv CVSROOT /cygdrive/h/cvsroot 
setenv XUSERFILESEARCHPATH ~/APPLRESDIR 
 

Create directory d:\cyghome\APPLRESDIR 

Create file d:\cyghome\APPLRESDIR \XTerm containing: 

XTerm*background:  #ff9 
XTerm*foreground:  black 
XTerm*ScrollBar:   True 
XTerm*SaveLines:   1000 
XTerm*geometry:    100x70 
XTerm*VT100*font:  7x13 

On the Windows desktop, right-click the Cygwin icon, click Properties, set Target to 
d:\cyghome\cygwin.bat, set Run to minimized, click Ok. Now double-click the Cygwin icon to 
start cygwin. The X Window server should start full-screen with two xterm windows and a clock 
applications running. 

Note:  Sometimes Cygwin does not install cleanly.  If you have problems with missing DLLs, 
check for them at: filehost://asg.evla.Distributions.Cygwin_missing_DLLs 

 

Appendix 1.4         HiTOP Debugger Setup 

Start HiTOP from its desktop icon. Very briefly, the HiTOP embedded tool can load an image to 



MIB Software Development and Overview      Revision 1.1.0 

Page 19 of 26 

the MIB, control execution and inspect memory. File->Load allows downloading an image. F9 
will start execution. Shift-F9 will halt execution. F11 resets the MIB. See the Go menu for 
various methods to single-step execution using F6, F7 and F8. View->HLL displays the current 
stack trace. View->Memory allows displaying any arbitrary memory block.  Local->Examine 
allows the viewing of a selected variable, but for local stack variables (including routine 
parameters) be aware that the compiler may have optimized the use of registers in such a way 
that the debugger will not always display the correct data for that type of variable.   

To setup the TC11IB processor using HiTop, go to menu option Setup->Processor and choose 
the EBU Config 1 Pane.  For EBUCON use 0x10068.   Choose EBU Config 2 Pane.   Enter the 
following parameters:  

BUSCON0 0x420000  ADDSEL0 0xA0000041 BUSAP0 0xFFFFFFFF 

BUSCON2 0x820000  ADDSEL2 0xA08000F1 BUSAP2 0xFFFFFFFF 

Choose EBU Flash Programming Pane.  Check 'Enable Flash Programming'.   Enter 
0xA0000000 for 'Flash Base Address'.   

Appendix 1.5         Software organization 
All MIB software falls into two broad categories: the Nucleus operating system and the NRAO 
application.  Nucleus is in VENDOR/ATI/Nucleus_TC11IB.  Source is included but need not be 
used in routine development because all Nucleus functions are already compiled into libraries. 

The application code is further divided into a framework expected to be the same on all MIBs 
and one directory for the software pertaining to each module to which the MIB may be attached. 
The framework code is in NRAO/EVLA/MIB/src/mib_app. The module directories are in  
NRAO/EVLA/MIB/src/<module-name>.  For example, the software specific to an L301/2 
module is in  NRAO/EVLA/MIB/src/L30x. 

Appendix 1.6         Software development 

Initially, a MIB software developer will need to create a directory structure and populate it with 
Nucleus and MIB source files.    

Click in an xterm, create and cd into a directory named CVS_Projects, then check out the entire 
MIB software from the network repository as follows: 

$ mkdir CVS_Projects 
$ cd CVS_Projects 
$ cvs co NRAO 

Next, check out the VENDOR CVS Project as follows: 

$ cvs co VENDOR 

At this point, the directory structure and content has been established for MIB code development.   

There is a Makefile in each module directory. Typing just make will reach over to other 



MIB Software Development and Overview      Revision 1.1.0 

Page 20 of 26 

directories and insure their libraries are up to date, compile the software for the particular 
module, link everything into a load image and create symbol tables suitable for downloading and 
executing by the HiTOP development tool. All modules put their load images and associated 
files in \\filehost\evla\software\MIB\bin with names beginning with the name of 
the module (e.g. L30x_edram.sre).  The Makefiles expect the \\filehost\evla network directory to 
be mapped (on Windows) to the z: drive.  

 

Appendix 2 Troubleshooting 

Known Tasking Compiler Bugs 
 
[PROB1] 
 Title: Bug in test code generation 
 Description: 
 The compiler will not generate the proper code for a test of 
the form: 
  x = a?b:c 
 
 where: 'a' is some constant expression, and 'b' and 'c' are 
values. 
 
 The compiler will generate code to extract bits from 'a' 
instead of doing a simple test and branch, and will always pick the 
true clause 'b' no matter the value of 'a'. 
 
 
[PROB2] 
 Title: Bug in array address arithmetic 
 Description: 
 The compiler will not correctly calculate the number of array 
elements between two address locations in the array under some 
conditions which are not clearly understood.  For example: 
   int array[10]; 
   int *p=&array[5]; 
   int b=p-array; 
 
   'b' should be the number of elements in the array 
between the address pointed to by 'p' and the array's beginning address. 
 
  The compiler will sometimes generate code that will produce a result 
of 0, apparently by dividing the difference in addresses by a huge 
number.  The exact cause of this problem is not known since it 
occurred in a complex block of code, and the problem disappeared once 
the complexity was reduced. 
 
 
[PROB3] 
 Title: Syntax error for initialization of arrays of structures 
 Description: 



MIB Software Development and Overview      Revision 1.1.0 

Page 21 of 26 

 The compiler will issue a warning message on the syntax: 
 
     typedef struct { 
      int a,b,c 
      } samplestruct; 
 
     samplestruct x[]={ {1,2,3}, {1,2,3}, }; 
 
 The problem is the last comma "," before the closing curly 
brace.  That syntax is allowed in ANSI C, but the compiler does not 
want to see that comma there.  
 
 
[PROB4] 
 Title: No vsnprintf() function implemented in ANSI C library 
 Description: 
 This function is not available.  vsprintf() is. 
 
 
 
 

Appendix 3 XML File Format Description 
 

Appendix 3.1         Introduction 
--------------- 
This file describes the XML file format (usually named "logical_pts.xml") 
used by the EVLA's MIB framework software to describe and set up the data 
points used to monitor and control the EVLA module hardware. 

Appendix 3.2         Basic File Structure 
--------------- 
The XML file is a simplified hierarchical description of the major hardware 
components of a module and the monitor and control points associated with 
those components. 
 
The file has an outer level description that identifies it as a MIB XML file.  
This outer level has the form: 
 
<Logical_Pts> 
 . 
 . (hardware component definitions listed here) 
 . 
</Logical_Pts> 
 
 
The module will have 1 or more hardware components, each component referred 
to as a "device".  There is no arbitrarily imposed upper limit on the number 
of devices.  Typically, there are no more than 2 devices per module; each is 
listed one after the other inside the outer level definition. 



MIB Software Development and Overview      Revision 1.1.0 

Page 22 of 26 

Device Entry Format 
------------------- 
A device entry has the form: 
 
   <device name="devicename"> 
    . 
    . (logical data point entries listed here) 
    . 
   </device> 
 
 
The device name is an attribute of the device and is any alphanumeric 
string with the addition of the underscore ("_") character, that is no 
longer than 23 characters.  The name may be upper or lower case, but  
typically searches on the device name are not case-sensitive.  The 
entire name is enclosed in double quotes as shown in the example.  
 
 
Logical Data Point Entry Format 
------------------------------- 
Inside each device entry are lists of logical point entries, which can be 
either "monitor" or "control" type entries.  These entries are referred to  
as "properties". 
 
A property entry will have one of the following forms: 
 
    <monitor ... /> 
 
or 
 
    <control ... /> 
 
 
where the ellipses are replaced by a list of fields, called "attributes", 
which describe the monitor or control data point entry more fully. 
 
 
Attribute Format 
---------------- 
Each attribute is composed of the name of the attribute followed by 
the value for that attribute.  The format is: 
 
   attributename="value" 
 
where the "attributename" is the name of an attribute for that property, 
and the value is any valid string representing the value for that attribute. 
Attribute values are generally numbers, such as floating point or integer 
values, but can also be strings and enumerations, which are represented by 
their string equivalents.  The name attribute associated with a device  
entry is an example of a string-valued attribute. 
 
Each attribute is separated from the ones around it and from the 
property type by 1 or more space or tab characters.   
 



MIB Software Development and Overview      Revision 1.1.0 

Page 23 of 26 

Attribute Descriptions 
---------------------- 
This is a description of all of the currently available and defined 
attributes that are recognized by the MIB framework software.  Some  
of the attributes are only used by module-specific software, and their 
values (but not value type) and use are defined by that software.  Thus, 
different modules may use the same attributes for different things. 
 
Each property type has its own set of attributes, some of which may be 
the same.  In addition, each property is further qualified by a "type" 
attribute that will select the list of attributes available for that  
type. (See the Service Port ICD for additional information on attributes.) 
 
 
Required Property Attributes 
---------------------------- 
All properties must have the common attributes "name" and "type" (see 
below).  All other attributes are optional. 
 
 
Missing Optional Attributes 
--------------------------- 
If an attribute is not present in an XML file, that attribute will 
default to a value of 0, which depending on the attribute's type can 
mean different things; enumeration strings generally will default to 
the first enumeration value present in the list, strings will be null, 
etc. 
 
 
Common Property Attributes 
-------------------------- 
Both "control" and "monitor" properties have the following attributes. 
 
AttributeName      Type       Range       Description 
=============   =========   ==========    ================================ 
name            string      1 to 23 char  Alphanumeric name, plus "_" char 
type            enumstring  analog or     Type of property classification  
                            digital       Analog includes any multibit 
                                          quantity, digital is only a 0 or 
                                          1 value. 
a_period        integer     0 to maxint   archive rate, in 1/10th second 
                                          increments (600=1 minute) 
s_period        integer     0 to maxint   screen update rate, in 1/10th 
                                          second increments 
o_period        integer     0 to maxint   observe layer rate, in 1/10th 
                                          second increments 
aa_period       integer     0 to maxint   alert archive rate, replaces 
                                          archive rate if pt is in alert 
msg             string      0 to 47 char  Any string value (double quotes  
                                          can be in the string but delimiters 
                                          must then be single quotes) 
 
 
 



MIB Software Development and Overview      Revision 1.1.0 

Page 24 of 26 

Monitor Property Attributes 
--------------------------- 
 
Common Attributes 
----------------- 
There are no common attributes specifically for the monitor property. 
 
 
Analog Monitor Attributes 
------------------------- 
 
AttributeName      Type       Range        Description 
=============   =========   ==========     ================================ 
value           double      any double     initial value of the point 
target          float       varies         value desired (for control loops) 
conv_type       enumstring  see desc       method to get from raw counts to 
                                           engineering value (see below) 
slope           float       any float      used in the LINEAR and 
                                           SIGNED_LINEAR conversion formulae 
intercept       float       any float      used in the LINEAR and 
                                           SIGNED_LINEAR conversion formula 
                                           as an offset, + or -. 
engr_unit       enumstring  various        the "bitfield" type will produce 
                                           a hexadecimal output for any 
                                           double float attribute. 
lo_alert_flg    boolean     0 or 1         1 enables alerts on low values 
min             float       any float      minimum value below which the 
                                           point will go into low alert 
hi_alert_flg    boolean     0 or 1         1 enables alerts on high values 
max             float       any float      maximum value above which the 
                                           point will go into high alert 
alert_count     integer     0 to maxint    consecutive cycles with value 
                                           under the "min" or over the "max" 
                                           before alert state entered; also 
                                           consecutive cycles with value over 
                                           or at the "min" or under or at the 
                                           "max" before alert state exited; 
 
 
The possible values for conv_type are: 
SIGNED_LINEAR - packed 12-bit signed value linearly converted 
POLYNOMIAL    - module software defined polynomial function 
LINEAR        - rawcount*slope+intercept = engineering value 
NO_CONVERT    - rawcount is used directly. 
 
 
 



MIB Software Development and Overview      Revision 1.1.0 

Page 25 of 26 

 
Digital Monitor Attributes 
-------------------------- 
 
AttributeName     Type        Range        Description 
=============   =========   ==========     ================================ 
value           boolean     0 or 1         initial value of the point 
alert_arm       boolean     0 or 1         1 enables ability of point to go 
                                           into alert state. 
alert_on1       boolean     0 or 1         normal value of the point, 
                                           different values cause alert  
                                           (note no counter is used) 
 
 
 
Control Property Attributes 
--------------------------- 
 
Common Attributes 
----------------- 
  
AttributeName     Type        Range        Description 
=============   =========   ==========     ================================ 
dev_type        enumstring  various        communications interface used to 
                                           send the command to the hardware 
 
 
Analog Control Attributes 
------------------------- 
 
AttributeName     Type        Range        Description 
=============   =========   ==========     ================================ 
value           double      any double     initial value of the point 
conv_type       enumstring  see descr      method to get from raw counts to 
                                           engineering value (see below) 
slope           float       any float      used in the LINEAR and 
                                           SIGNED_LINEAR conversion formulae 
intercept       float       any float      used in the LINEAR and 
                                           SIGNED_LINEAR conversion formula 
                                           as an offset, + or -. 
min             float       any float      lower range limit of engineering 
                                           value, lower values rejected. 
max             float       any float      upper range limit of engineering 
                                           value, higher values rejected. 
step            float       any float      for controlled outputs, how much 
                                           to increase/decrease value  
                                           (implemented on a per module 
                                           basis) 
engr_unit       enumstring  various        as above for analog monitor points 
p0              double      any double     term for polynomial 
p1              double      any double     term for polynomial 
p2              double      any double     term for polynomial 
p3              double      any double     term for polynomial 
 



MIB Software Development and Overview      Revision 1.1.0 

Page 26 of 26 

AttributeName     Type        Range        Description 
=============   =========   ==========     ================================ 
p4              double      any double     term for polynomial 
p5              double      any double     term for polynomial 
p6              double      any double     term for polynomial 
p7              double      any double     term for polynomial 
 
 
The possible values for conv_type are: 
SIGNED_LINEAR - packed 12 bit signed value linearly converted 
POLYNOMIAL    - module software defined polynomial function 
LINEAR        - rawcount*slope+intercept = engineering value 
NO_CONVERT    - rawcount is used directly. 
 
 
 
Digital Control Attributes 
------------------------- 
 
AttributeName     Type        Range        Description 
=============   =========   ==========     ================================ 
value           boolean     0 or 1         initial value of the point 
 


