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Abstract: I investigate the problem of high dynamic range continuum
imaging in the presence of confusing sources, using scaling arguments
and simulations. I derive a quantified cost equation for the computer
hardware needed to support such observations for the EVLA and the SKA.
This cost has two main components – from the data volume, scaling as
D!6 , and from the non-coplanar baselines effect, scaling as D!2 , for a
total scaling of D!8 . A factor of two in antenna diameter thus corresponds
to 12 years of Moore’s law cost reduction in computing hardware. For a
SKA built with 12.5m antennas observing with 1 arcsecond at 1.4GHz, I
find the 2015 computing cost to be about $5B. For 25m antennas, the cost
is about 256 times lower: $20M.

This new cost equation differs from that of Perley and Clark, which has
scaling as D!6 . This is because I find that the excellent Fourier plane
coverage of the small antenna design does not significantly improve the
convergence rate of the Clean algorithm, which is already excellent in this
regime.

1. Introduction

Perley and Clark (2003) have recently derived a cost equation for synthesis arrays that
includes the computing costs to counteract the non-coplanar baselines aberration. One
conclusion from their work is that the cost equation should include a cubic term in the
number of antennas. Consequently the minimum cost antenna diameter for fixed
collecting area is increased over that derived while ignoring the costs of non-coplanar
baselines. To determine how much the diameter is increased, the actual scaling
coefficient must be known. In this document, I estimate the scaling relationships using
analysis of the processing algorithms and large simulations performed in AIPS++.

                                                  
1 An earlier version was published as EVLA memo 76. This version has been revised extensively,
mainly in section 2 to improve the scaling arguments. Cost numbers have changed, some up,
some down.
2 The National Radio Astronomy Observatory is operated by Associated Universities, Inc., under
cooperative agreement with the National Science Foundation.
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2. Scaling behavior

Perley and Clark analyzed the time taken to clean an image afflicted by non-coplanar
baselines smearing using the facet based algorithms (see Cornwell, Golap, and
Bhatnagar, 2004 for more on the taxonomy of wide field imaging algorithms). The w
projection algorithm in AIPS++ outperforms the facet-based algorithms in AIPS, and
AIPS++ by about an order of magnitude (Cornwell, Golap, and Bhatnagar, 2003, 2004),
and so I choose to use it for these simulations.

Calculation of the work required to make a dirty image using w projection is
straightforward but for clarity I first consider the case where the non-coplanar baselines
effect can be ignored. Let there be N antennas of diameter D on baselines up to B. The
number of channels and the integration time both scale as B / D . The number of
baselines goes as N 2 and so the data rate goes as N 2B2 / D2 . For a constant collecting
area, this is B2 / D6 . Only one image is made. The working in gridding nearly always
dominates over that for the Fast Fourier Transform. The data are gridded onto the
(u,v,w=0) plane using a convolution function of fixed size, typically 7 by 7 or 9 by 9
pixels. Hence the number of operations required to grid the data goes as the data
rateN 2B2 / D2 .

If the non-coplanar baselines effect is important, either w projection or facet-based
imaging must be used. For the former, one image is made and the area of the gridding
function in pixels goes as !B / D2 , and for the latter, the gridding function is constant but
the number of images goes as !B / D2 . Hence the number of operations required to grid
the data goes asymptotically as !N 2B3 / D4 , which for a constant collecting area goes as
!B3 / D8 .

For the cleaning, there are two main operations – the minor cycle clean and the major
cycle calculation of the residuals. The latter nearly always dominates, and so the total
cost goes as the number of major cycle times the gridding cost. The number of cycles is
driven by the maximum exterior sidelobe (exterior to the beam patch in the Clark minor
cycle). Each major cycle lowers the noise floor by roughly the sidelobe level, and so the
dynamic range achieved after Nc  major cycles is roughly:

! ~ 1
2pb

"
#$

%
&'

Nc

The factor of 2 occurs because for stability the clean in a major cycle typically terminates
somewhat above the maximum sidelobe. The number of major cycles is:

Nc ~ !
log "( )
log(2pb )
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I show in Appendix A the familiar result that the rms sidelobe level goes as the inverse of
the square root of the number of visibility samples. If the field of view is held fixed, then
the number of visibilities goes as D!4  and the sidelobe level as D2 , which is the scaling
assumed by Perley and Clark. However, the field of view must expand as the antenna
diameter decreases. Taking this into account, the number of visibilities goes as D!6 , and
the rms sidelobe as D3 .

If the peak sidelobe level is 5 times the rms, the number of major cycles is:

Nc ~
log !( )

log( Ns / 50)

This excellent scaling behavior holds as long as the work in the minor cycle can be
ignored. For imaging of complex sources, this may not be true.

Note also that the source spectral index enters only via the logarithm of the dynamic
range. Hence that source of wavelength dependency can be ignored.

Taking all of these factors into account, I obtain scalings as shown in Table 1. This result
differs from that of Perley and Clark principally because of the cleaning behavior. There
is surprisingly little gain in speed for improvements in sidelobe level. I take special note
that this is mostly due to the excellent characteristics of the Clark Clean algorithm.

I agree with Perley and Clark that there is an enormous penalty to using small antennas.
This analysis is somewhat unfair to small antennas in that the benefits of excellent
Fourier coverage for imaging complex sources are not incorporated but it does represent
well the cost of removing confusing sources. This may change the numbers by 2 or 4 but
will not compensate for the power of eight scaling.

Table 1 Expected scaling of imaging time with antenna diameter. This includes the
costs of gridding, Fourier transform, and deconvolution. C is a constant.

Number
of

antennas

Time and
frequency
sampling

Non-coplanar
baselines

Cleaning Total

General N 2 B2

D2

!B
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log "( )
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2. Simulations

There are many subtle points to get right in the above analysis. Hence simulation is
essential to check the scaling, and to determine the scaling coefficient.

Simulation of SKA observing on current computers is barely possible. I therefore choose
to simulate only a short period of observing: 50s of time spread over 3000s of hour angle.
The maximum baseline length was chosen to be only 10km. The antenna locations were
chosen using a random process designed to give approximately Gaussian Fourier plane
coverage. I performed three sets of simulations, with the same baselines and antennas but
with wavelengths separated by factors of ten to separate out the influence of the non-
coplanar baselines effect (this does not mean that I expect that a 12.5m antenna would be
used to observe at 2.1m – just that it’s convenient to scale the simulations in such a way).

These simulations have been constructed to scale appropriately with antenna diameter –
hence as the antenna gets smaller, the integration time and narrow the bandwidth
decrease linearly. This means that the data volume does indeed scale as D!6 .

The simulations were performed using the AIPS++ (version 1.9, build 549) simulator
and qimager tools, running on a Dell 650 Workstation (dual processor Xeon 3.06Ghz
processors, 3GB memory, Redhat Linux 7.2, special large memory kernel). The
SPEC2000 floating point benchmark (CFP2000) is 13.8. Only one processor was used.

Table 2 Details of simulation
Total collecting area Equivalent to 1600 12m antennas within 10km
Antenna diameter 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, 35, 37.5,

40m
Number of antennas Set by antenna diameter to achieve fixed collecting

area
Array configuration Random antenna locations
Frequency 14GHz, 500MHz bandwidth; 1.4GHz, 50MHz

bandwidth; 140MHz, 5MHz bandwidth.
Observing pattern 50s at transit, integration time 10s, scaling as

antenna diameter, with gaps of 600s
Number of spectral channels 8 channels maximum, scaling inversely with

antenna diameter
Array latitude 34 deg N
Source declination 45 deg
Source details 250 point sources per primary beam with source

count index –0.7. Peak strength = 1Jy (but two
sources may be in same pixel).

Antenna illumination pattern Unblocked, uniformly illuminated
Synthesis imaging details 0.15, 1.5, 15 arcsec pixels, uniform weighting, with

0.6, 6, 60 arcsec taper. The image size scales
inversely as antenna diameter. For the AIPS++ FFT,
the image size must chosen to be the next largest
composite of 2, 3, and 5.

Number of w planes in w projection algorithm 128
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Clean details Cotton-Schwab algorithm, loop gain 0.1, maximum
100,000 iterations, stopping threshold 0.1mJy for
40m scaling as 1 / Ns

Resolution 0.6, 6, and 60 arcsec

The quantitative simulation results are given in Table 3. Some notes:

• The Fresnel number is !B / D2 .
• The width of the w projection gridding function is determined from the

numerically calculated form, and is closely related to the Fresnel number.
• Times shown are wall clock.
• The image properties shown are the minimum (affected by cleaning errors around

bright sources), and the median absolute deviation from the median (a robust
statistic showing the off source error level.

• I was not able to complete the most time-consuming case – 12.5m antennas
observing at 2.1m. My estimate is that it would have taken about 4 days.

Wavelength 2.1 m
Antenna Fresnel GCF

diameter number width Ant Int Chan Sources Image Vis MS Threshold Comps Cycles min Outer minimum robust
m pixels pixels records GB construct predict clean mJy
15.0 93.3 129 1111 8 13 694 4320 64126920 3.917 750.3 8865.5 73767.2 1.9 16516 4 -0.0015 0.0015 -2.97E-05 2.99E-06
17.5 68.6 128 816 7 11 510 3600 25604040 1.612 224.0 1848.4 15858.8 1.2 14517 4 -0.0011 0.0011 -7.66E-05 2.61E-06
20.0 52.5 109 625 6 10 390 3200 11700000 0.691 85.1 574.5 4924.7 0.8 11791 4 -0.0013 0.0015 -7.87E-05 2.29E-06
22.5 41.5 90 493 5 8 308 2880 4851120 0.297 43.2 183.4 1582.2 0.5 10951 4 -0.0017 0.0023 -4.19E-04 2.97E-06
25.0 33.6 71 400 5 8 250 2500 3192000 0.196 28.8 85.1 738.5 0.4 10457 4 -0.0023 0.0030 -7.74E-05 2.75E-06
27.5 27.8 66 330 4 7 206 2304 1519980 0.096 14.5 41.4 358.4 0.3 9357 4 -0.0033 0.0059 -3.39E-05 2.34E-06
30.0 23.3 54 277 4 6 173 2160 917424 0.06 10.1 22.3 202.7 0.2 7533 4 -0.0052 0.0077 -2.65E-05 1.79E-06
32.5 19.9 48 236 3 6 147 1944 499140 0.035 5.8 12.2 134.6 0.2 7187 5 -0.0097 0.0157 -5.80E-05 2.74E-06
35.0 17.1 39 204 3 5 127 1800 310590 0.022 4.2 5.8 71.2 0.1 9524 5 -0.0150 0.0149 -6.47E-05 4.79E-06
37.5 14.9 39 177 3 5 111 1728 233640 0.017 3.5 4.7 69.0 0.1 10556 6 -0.0193 0.0180 -8.40E-05 5.08E-06
40.0 13.1 32 156 3 5 97 1600 181350 0.014 2.8 5.4 73.6 0.1 8218 6 -0.0238 0.0241 -9.03E-05 3.63E-06

Wavelength 0.21 m
Antenna Fresnel GCF

diameter number width Ant Int Chan Sources Image Vis MS Threshold Comps Cycles min Outer minimum robust
m pixels pixels records GB construct predict clean mJy
12.5 13.4 32 1600 10 16 1000 5000 2.05E+08 11.46 2288.3 2547.9 21671.3 3.4 20631 4 -0.0003 0.0003 -2.83E-05 3.43E-06
15.0 9.3 25 1111 8 13 694 4320 64126920 3.917 677.0 660.9 5678.9 1.9 16353 4 -0.0005 0.0007 -2.28E-05 2.72E-06
17.5 6.9 19 816 7 11 510 3600 25604040 1.612 203.7 217.6 2007.5 1.2 14270 4 -0.0007 0.0011 -4.01E-05 2.37E-06
20.0 5.3 16 625 6 10 390 3200 11700000 0.691 85.9 95.3 867.6 0.8 11619 4 -0.0011 0.0018 -8.83E-05 2.15E-06
22.5 4.1 14 493 5 8 308 2880 4851120 0.297 43.5 44.5 416.7 0.5 10468 4 -0.0019 0.0034 -4.09E-04 2.42E-06
25.0 3.4 11 400 5 8 250 2500 3192000 0.196 29.0 26.4 254.0 0.4 10196 4 -0.0021 0.0038 -1.99E-04 2.54E-06
27.5 2.8 11 330 4 7 206 2304 1519980 0.096 14.4 17.4 217.4 0.3 8099 5 -0.0048 0.0072 -2.60E-05 1.68E-06
30.0 2.3 10 277 4 6 173 2160 917424 0.06 10.1 12.4 123.7 0.2 7576 4 -0.0057 0.0078 -5.60E-05 1.76E-06
32.5 2.0 9 236 3 6 147 1944 499140 0.035 5.8 8.4 113.7 0.2 7376 5 -0.0097 0.0169 -5.51E-05 2.99E-06
35.0 1.7 8 204 3 5 127 1800 310590 0.022 4.2 3.6 59.7 0.1 10777 5 -0.0150 0.0152 -1.06E-04 5.40E-06
37.5 1.5 8 177 3 5 111 1728 233640 0.017 3.4 3.3 65.5 0.1 12111 6 -0.0193 0.0171 -8.50E-05 5.80E-06
40.0 1.3 7 156 3 5 97 1600 181350 0.014 2.9 4.6 67.7 0.1 7847 6 -0.0237 0.0243 -4.46E-05 3.31E-06

Wavelength 0.021 m
Antenna Fresnel GCF

diameter number width Ant Int Chan Sources Image Vis MS Threshold Comps Cycles min Outer minimum robust
m pixels pixels records GB construct predict clean mJy
12.5 1.3 7 1600 10 16 1000 5000 2.05E+08 3.202 2372.8 1195.5 10339.1 3.4 20621 4 -0.0003 0.0003 -2.75E-05 3.38E-06
15.0 0.9 6 1111 8 13 694 4320 64126920 3.917 727.9 380.6 3354.4 1.9 16333 4 -0.0004 0.0006 -2.11E-05 2.70E-06
17.5 0.7 6 816 7 11 510 3600 25604040 1.612 201.2 141.3 1374.2 1.2 14209 4 -0.0007 0.0011 -6.48E-05 2.37E-06
20.0 0.5 5 625 6 10 390 3200 11700000 0.691 87.2 71.0 659.9 0.8 11632 4 -0.0012 0.0018 -4.33E-05 2.15E-06
22.5 0.4 5 493 5 8 308 2880 4851120 0.297 43.1 36.6 351.1 0.5 10697 4 -0.0021 0.0032 -1.06E-04 2.60E-06
25.0 0.3 5 400 5 8 250 2500 3192000 0.196 29.6 23.0 222.2 0.4 10169 4 -0.0021 0.0040 -6.26E-05 2.53E-06
27.5 0.3 5 330 4 7 206 2304 1519980 0.096 14.7 15.8 201.3 0.3 8051 5 -0.0044 0.0072 -2.58E-05 1.69E-06
30.0 0.2 5 277 4 6 173 2160 917424 0.06 10.1 12.8 118.7 0.2 7597 4 -0.0055 0.0078 -3.00E-05 1.75E-06
32.5 0.2 4 236 3 6 147 1944 499140 0.035 6.2 8.3 111.5 0.2 7744 5 -0.0097 0.0168 -3.33E-05 3.28E-06
35.0 0.2 4 204 3 5 127 1800 310590 0.022 4.2 3.5 58.4 0.1 10727 5 -0.0150 0.0151 -1.16E-04 5.36E-06
37.5 0.1 4 177 3 5 111 1728 233640 0.017 3.5 3.0 64.3 0.1 11896 6 -0.0193 0.0171 -1.12E-04 5.74E-06
40.0 0.1 4 156 3 5 97 1600 181350 0.014 5.6 4.2 68.3 0.1 7633 6 -0.0237 0.0235 -2.68E-05 3.27E-06

Times to  …

Times to  …

Image propertiesCleanSizes… PSF

Sizes… PSF Image propertiesClean

Image properties
Times to  …

Sizes… PSFClean

Table 3 Simulation results
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3. The scaling laws

The rms sidelobe scales with the cube of the antenna diameter as expected (Figure 1), for
both natural and uniform weighting. These are very low by the usual standards in radio
synthesis but there is no qualitative change in behavior for small antennas.

Sidelobe levels

y = 5E-08x2.9887y = 1E-08x3.2616

0.0000

0.0001

0.0010

0.0100

10 15 20 25 30 35 40 45

Antenna diameter (m)

R
M

S Uniform rms
Natural rms

Figure 1 Sidelobe levels as a function of  antenna diameter, showing scaling as the
cube for both uniform and natural weighting.

Figure 2 Model prediction times as a function of antenna diameter for low (<<1),
medium (~1), and high (>>1) Fresnel numbers. Antennas > 27.5m have been

excluded.

Model prediction times
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Figure 3 Clean times as a function of antenna diameter.

I find in the simulations that the scaling index for imaging time with antenna diameter
varies with the Fresnel number as shown in figures 2 and 3 and as summarized in table 4.

Table 4 Observed scaling index for cleaning time as a function of antenna diameter.
Fresnel number Model prediction Clean

~ 10 - 1000 ~ -8.9 ~ -8.8
~ 1 - 10 ~ -6.4 ~ -6.0
~ 0.1 - 1 ~ -5.5 ~ -5.2

The scaling is steeper than –8 at the extreme ends but I believe this is most probably due
to an onset of moderate paging. Hence for the high Fresnel number case, the scaling
power can be taken to be –8.

Assuming Moore’s Law for the cost of processing, the scaling law is:
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Or, for a constant collecting area:

Clean times
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The filling factor f is the fraction of collecting area within the baseline B. For the SKA,
the scientific specification on collecting area is 50% within 5km. The efficiency of
processing, ! , is both very important and as yet unknown. It includes, for example, the
cost of correcting for source spectral effects, and antenna primary beams, and the
efficiency of parallel processing. A reasonable value for this efficiency is about 10%.

For a 17.5m antenna design, the ratio between observing time and real time in our
simulation is roughly 3000, so the efficiency is about 0.03% (for 25m, the ratio is ~ 100,
efficiency is ~ 1%). The computer used in the simulations cost about $8000 in 2003.
Solving, I find that the coefficient C12.5m  is about $7M.

Since the antenna size for the EVLA has been chosen, I write the EVLA cost equation as:
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Scaling appropriately from CSKA , I find that CA is $170K.

The number of operations required per data point can be estimated by scaling by the CPU
clock rate. The curves shown in figure 4 reach a minimum at about 20,000 floating
pointing operations per data point. This should be taken as correct in order of magnitude
only but it does reflect the scale of processing per data point.

"Operations" per data point versus Fresnel number
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Figure 4 Operations per data point versus Fresnel number, calculated by
scaling time by clock frequency, dividing by number of data points. The left end
of each curve is biased upwards by constant cost terms.
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4. Implications for the EVLA

For the EVLA A configuration (baselines up to 35km), the cost of computing hardware
required for wide-field processing is $170K in 2010, $17K in 2020. This is quite modest
and not dissimilar to previous estimates. In phase II, the EVLA will have baselines up to
350km baselines, and the costs would be $17M (2015), and $1.7M (2025). Such
observations would be fairly rare and so the actual required duty cycle would be low.

Algorithm improvements help. The advent of w projection brings the cost down by about
an order of magnitude, which is equivalent to a decade of Moore’s law gains. Poor
symmetry and stability of e.g. primary beams and pointing will hurt a lot by decreasing
the efficiency (see e.g. Cornwell, 2003).

In addition, there remains a lot of software development to be done. It is clear that
parallel processing using tens or hundreds of processors will be required to handle EVLA
data. There has been relatively little work on parallelization of synthesis imaging
algorithms.

Finally, operational models of the EVLA will affect the cost estimates. If the most
demanding observations occur infrequently and turnaround can be a few days or weeks
(as is now often the case) then the computing costs can be reduced proportionately.

5. Implications for the SKA

The canonical case of SKA imaging with 12.5m antennas on the 5km baselines at 20cm
would require only $12M in 2010, and $1.2M in 2020. However, for the more interesting
case of the 35km baselines, the costs rise to $5.4B and $0.5B. Increasing the antenna
diameter to 25m brings the costs down to $21M and $2M. For 350km baselines, the cost
increases to $21B and $2B, even with 25m antennas!

A key point is that the scaling behavior is very dramatic, as the cube of the baseline and
the inverse eighth power of the antenna diameter. In comparison, the effects of more
bandwidth and longer wavelength are linear. Thus the SKA computing budget will be
determined by the scientific emphasis placed on baselines in the range of 10km and
longer.

The primary conclusion is that computing hardware is a major cost driver for the SKA,
and much more attention is required before the concept cost estimates can be viewed as
accurate. In addition, simulations should start to include the non-coplanar baselines
effect, so as to raise awareness of the importance of the effect for SKA. In the specific
case of the LNSD concept, the cost minimization with respect to antenna diameter should
be repeated with these more accurate computing costs included.
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6. Possible remedies

Are there ways to avoid this large cost penalty for small antennas?

• Invent an algorithm for non-coplanar baselines with better scaling: This is a good
idea, of course. The newest algorithm, w projection, is much faster than the old
algorithm (faceted transforms), but has fundamentally the same D!8  scaling
behavior, arising from the data volume, D!6 , and the physics of Fresnel
diffraction, D!2 . More algorithm development is probably needed, but we
shouldn’t cash in breakthroughs not yet made.

• Reweight the data taking account of the superb Fourier plane coverage of LNSD:
This has been done in these simulations. Tapered uniform weighting brings the
sidelobes down by some factor but the basic scaling with the inverse square root
of the number of visibility sample still applies. In any event, I have shown that the
number of major cycles is only weakly determined by the sidelobe level.

• Average data per facet: It has been suggested (Lonsdale, private communication)
that in a faceted transform, the data can be averaged in time and frequency before
gridding, thus removing a factor of D!2 . While this is correct, it must be done
appropriately for each facet, and therefore the factor is immediately lost. There
may be a slightly lower scaling coefficient, bringing faceted processing closer to
w projection in speed.

• Ignore the sources outside the minimum field of view needed for science: Rely on
averaging in time and frequency to suppress the sidelobes from these sources.
Experience at the VLA is that this approach does not work well. However, it may
be more effective given the superior Fourier plane coverage of the SKA.

• Form stations from clusters of antennas: This would help a lot and certainly
seems necessary on the longest SKA baselines. Whether it is acceptable for the
shorter, 35km, spacings needs more study. It would undermine the strength of
LNSD – the superb Fourier plane coverage.

• Only observe snapshots: For snapshots, the effect of non-coplanar baselines is
less. At the dynamic range required, the integration time would have to be very
short (~minutes or less).

• Only do hard cases infrequently: The VLA followed this path in the early eighties
when spectral line observing was almost impossible. As technology improves, the
duty cycle can be changed. This requires continuing investment in computing, and
deferred gratification.

• Mandate an efficiency of 100%: The costs scale inversely as the efficiency of
processing, ! . We could mandate a “one-shot” policy. This seems to be counter-
productive – why build a $1B telescope and then not reduce the data correctly?
Efficiency of 100% is unlikely, anyway, since self-calibration will almost always
be needed.

• Build special purpose hardware for imaging: This is quite plausible and should be
investigated. The best approach would probably be to build a special (digital)
processor to do the w-projection part of the imaging, and keep the rest of the
processing in general purpose computers. Most of the work in w projection arises
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from convolving the measured visibilities onto a regular grid, using a convolution
function that varies in width as  ! w pixels to reflect the Fresnel diffraction
effect (Cornwell, Golap, and Bhatnagar, 2003, 2004). The half-width of the
convolution kernel is given in Table 3. For the most difficult cases, this can be in
the range 100-300. This type of processing is also well suited to Graphical
Processing Units (GPUs), which are now a commodity item, and some
investigation of their use would be worthwhile.

Moving to very large antennas might seem the best way to solve this problem. However,
the simulations with 40m antennas were marginally stable, tending to diverge for fewer
hour angles. This should be understood in more detail before concluding that very large
antennas are acceptable.

7. Summary

I find that for the specific problem of imaging in the presence of confusing sources, the
use of small antennas comes at huge computing cost, as the inverse eighth power of the
antenna diameter or the fourth power of the number of antennas. The cost has two main
components – from the data volume, scaling as D!6 , and from the non-coplanar baselines
effect, scaling as D!2 .

Continued algorithm research in this area is vital. We should investigate deploying
existing algorithms on parallel machines, and possibly GPUs and special purpose
hardware.

Finding a way to avoid this cost should be a high priority for SKA concepts that use
relatively small antennas, such as the LNSD and the Aperture Array, as should be
justifying the use of such small antennas.
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Appendix A

For the scaling relations, we need approximate relations for the typical sidelobe level
outside the center region of the PSF. This number determines how deeply any one major
cycle of the clean algorithm can go.

The PSF is the Fourier transform of the weights attached to the visibility samples. For a
gridded transform, the weight per grid cell is a product of the sum of the weights in that
cell, optionally divided by some uniform weighting correction, and optionally multiplied
by a taper function. The weighting correction is chosen to minimize the noise level
(natural weighting), the sidelobe level (uniform weighting), or some compromise (robust
weighting). See Briggs (1995) for more details.

We can use a random model for the distribution of Fourier plane samples. The PSF is
simply a linear combination of the Ng  grid weights. Thus the variance per grid cell adds:

! psf
2 = Ng !w

2 " w 2( )
We will limit our considerations to the case where all samples have the same intrinsic
weight (before gridding). Normalizing the PSF then amounts to dividing by the total
number of samples Ns .

For natural weighting, we can use a Poisson model of mean Ns / Ng . The variance
about the mean is Ns / Ng  and so the rms sidelobe level is:

! psf ,nat =
1
Ns

For uniform weighting, the weight per grid cell is either 0 or 1. If the number of empty
cells isNe , then the rms sidelobe level is:

! psf ,uni =
Ng " Ne

Ng " Ne

We can apply the Poisson model again, but this time we are interested in the number of
empty cells given that I distributed Ns  samples at random. The probability that a given
cell is empty is:
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e
!
Ns
Ng

Hence the rms sidelobe goes as:

! psf ,uni =
1

Ng 1" e
"
Ns
Ng

#

$
%

&

'
(

For small average sample density much less than 1, this can be approximated by the
natural weighting result. For high density, the number of grid points plays the role of the
number of samples.


