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Abstract Phased-array feeds are possibly the best option for the 240 to 1200 MHz band on VLA
antennas due to their wide bandwidth and relatively small size. One of the greatest assets of these
antennas is the ability to produce a shaped beam by appropriately phasing the elements allowing
in some cases nearly uniform aperture illumination with minimal ground-directed spillover. The
beam-forming properties of Vivaldi focal plane arrays are explored here using detailed calculations
that account for the true beam shapes of Vivaldi elements and the geometry of the VLA antennas.
We find that the beam-forming properties of Vivaldi arrays are well suited for the VLA. Some
additional properties of focal plane array beam-forming are presented as well.

1 Introduction

This memo describes how Grasp8 [1] and realistic focal plane array element patterns can be used to under-
stand better the properties of focal plane arrays. It is a follow-up to EVLA Memo 53 [2], but with much
more realistic calculations. Focal plane arrays are currently being explored by a number of radio astronomy
observatories. The potential for inexpensive, high performance, high bandwidth feeds, especially for radio
wavelengths longer than about 5 cm is compelling.
At a discussion in Charlottesville, VA in May 2003 several unexplored details emerged, each of which could

complicate the deployment of focal plane arrays for very demanding radio astronomy applications. These
issues include: resistive losses, matching to LNAs, truncation effects of finite arrays, element spacing effects,
manufacturing issues, noise coupling between elements, spillover cancellation, and wide-band beam-forming.
The simulations presented here attempt to shed light on the spillover cancellation and beam-forming aspects
of a finite array, using a realistic antenna model and realistic array element patterns. All of the simulations
discussed are in the context of a 240 to 800 MHz focal plane array suitable for use on a VLA antenna.

2 Simulation

The simulations described here can be broken down into three distinct processes, explained in detail in the
following sections. The first phase of the simulation is the beam pattern calculation for each element via
Method of Moments (MoM). Each of these elements is then used to feed a VLA antenna from the primary
focal plane. Grasp8 is then used to compute the corresponding antenna pattern for each element. Finally
beam-forming is performed using the properties of the antenna beam patterns.

2.1 Conventions

Right-handed Cartesian coordinate systems are used throughout the calculations. The positive z axis is
always aligned with the principle radiation axis. In several instances polar coordinate systems are used. The
two coordinates are θ, the angle from the z axis, and φ, the azimuthal angle which is zero along the x axis
and increases counter-clockwise toward the y axis. MKSA units are used (i.e., meters (m), volts (V), seconds
(s), and ohms (Ω)). These calculations are performed in the transmission case. Reciprocity guarantees that
the results obtained this way are correct for the receive case as well.

2.2 Element pattern calculation

The focal plane array chosen for this simulation consists of 180 Vivaldi elements arranged on a square grid.
They are electrically connected with each other (cf. [3] and references therein). The eight-fold symmetry
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reduces to 25 unique element radiation patterns that are computed using a MoM algorithm. The element
gridding is shown in Figure 1; it is made of “Rao-Wilton-Glisson” basis functions [4]. The designations of
these 25 unique elements are given in Figure 2. The remaining 155 elements’ patterns are derived from
symmetry. The ith element’s radiation pattern for a one volt excitation and a 100Ω series impedance,
~Ee,i(θ, φ), is computed over the forward hemisphere of the elements and sampled every 4.73 degrees in θ and
18 degrees in φ using MoM. The 25 patterns are shown for three frequencies in Figures 22–24 in Appendix B.
The array simulated consists of dielectric-free metallic plates attached to a ground plane of infinite extent.
A more realistic array consisting of metal-plated dielectric on an appropriately sized ground plane will be
analyzed later. The median-line symmetries of the array were exploited to reduce the complexity of the
calculations, running 16 times faster and in one quarter the memory that the same calculation would have
had the symmetries not been used. Somewhat more time and memory were saved by exploiting the diagonal-
line symmetry as well. A special treatment was applied to the basis functions and sources crossing the planes
of symmetry. Convergence towards the infinite-array solution has been verified.

Figure 1: The MoM grid used to compute currents on
each array element. 132 unknown currents computed
per element in the MoM calculations.
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Figure 2: The locations and designations of the 25
unique elements. Each horizontal and vertical seg-
ment corresponds to one of the 180 elements in the
array.

2.3 Antenna pattern calculation

The Grasp8 software package is used to compute currents on metal surfaces that are induced by radiation
sources and later compute the radiation patterns of the surfaces. An exact model of a VLA antenna would
be very hard to analyze due to compute time limitations and uncertainties in the scattering properties of
some antenna components, so some approximations are made. Although the exact beam patterns, especially
in the far sidelobes and backlobes, probably differ from those computed here, the results are still useful in
understanding beam-forming and spill-over cancellation. The upgraded VLA antennas have a feed cone that
stands about 1.8 m above the antenna surface with a 5◦ sloped roof to redirect reflected radiation away
from the subreflector. It also has a 110◦ sector missing to allow space for the large L-band feed. In the
Grasp8 model, the feed cone is represented by a circularly symmetric cone with a 5◦ slope that meets the
dish surface at the inner edge of the panels (2 m from the center). The second approximation is at the
apex of the antenna. Since the focal plane array’s scattering properties are not modeled, a model of the
VLA subreflector is used as the scatterer at the apex. The combined effects of these two approximations
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cannot dominate the primary beam or near sidelobe calculations. The effects of these approximations should
only become important around the fifth sidelobe due to the sizes of these scatters relative to the size of the
primary. It should be noted that the scattering off the support legs (struts) uses physical optics code meant
for struts at least λ/6 in cross section. This condition is barely met for the lowest frequencies studied.

For each of the 25 unique element patterns, ~Ee,i(θ, φ), a corresponding VLA antenna pattern, ~Ea,i(θ, φ) is
computed using the Grasp8 software package. Grasp8 computes the antenna radiation pattern by successive
illuminations of sources by other sources. This requires the user to explicitly program the sequence of
operations. For this application, this sequence can be summarized as:

F −→ L1
F, L1 −→ P
P −→ L2

P, L2 −→ S
F, P, L2, S −→ B

Each arrow refers to the illumination of the scatterer on the right from the source(s) on the left side. The
objects represented by letters are: feed (F), support legs (L1 and L2), primary reflector (P), subreflector (S),
and the antenna beam (or radiation pattern) (B). The legs have two opportunities to scatter the radiation,
hence the two separate simulation passes over the struts. The scripts used to drive Grasp8 are shown in
Appendix A. Future studies of this kind should include the L1 −→ B scattering which was inadvertently not
included in these simulations. Had this scattering been included, the computed system temperatures would
probably be a bit, but not substantially, higher, due to additional scattered power.
It should be noted that at the higher frequencies, the primary is not formally in the far-field of the array

since 2D2
array/λ ' 11 m, which is greater than their separation of about 9 m. At these higher frequencies

the radiating portion of the array shrinks to an area on the order of one square wavelength when a single
element is excited, so the use of far-field element patterns is valid.
The radiated field is calculated on two grids. The first, a full Nyquist sampled 4π steradian far-field

spherical grid, is used in the beam optimization calculation as described in the next section. The second is
a small oversampled far-field sine-projected beam pattern centered on θ = 0 out to a couple sidelobes, used
to reconstruct the beam pattern on the sky. All 25 unique antenna patterns at three specific frequencies are
displayed in Figures 25–27 in Appendix C.

2.4 Beam optimization

To achieve maximum on-axis sensitivity with a radio telescope, the ratio of forward gain to system temper-
ature (essentially a signal-to-noise ratio) is maximized. The parameters that are varied to achieve maximal
gain are the complex weights assigned to each element in the array. The optimal weight vector, ~w, which
consists of the dimensionless element weights, wi, is unique up to a complex scale factor. Since each linear
polarization is to be independently optimized, each will have its own set of weights. The symmetries inherent
in this particular problem cause the optimization of the X and Y polarizations to be equivalent, so only the
case of X polarization is considered further. In practice it will likely be the two senses of circular polarization
that are produced by this phasing, but the analysis follows in the same manner.
The total VLA antenna far-field radiation pattern, ~Ea(θ, φ), is a linear combination of the VLA antenna

patterns corresponding to each element:

~Ea(θ, φ) =
∑

i

wi
~Ea,i(θ, φ); (1)

it is a complex-valued function with dimensions of volts. The true electric field corresponding to this antenna
pattern is then

~E(r, θ, φ) = ~Ea(θ, φ)
e−ikr

r
. (2)

From the antenna pattern, the system temperature and forward gain and thus our figure of merit can be
computed. From this optimal weight vector, the pattern of the phased-array, ~Ee(θ, φ) is similarly computed:

~Ee(θ, φ) =
∑

i

wi
~Ee,i(θ, φ). (3)
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From this pattern, the illumination of the primary can be examined. Also, the direct spillover onto the
ground from the phased-array can be seen.
The power pattern is related to the radiation pattern by

dP

dΩ
(θ, φ) =

1

2η

∣

∣

∣

~Ea(θ, φ)
∣

∣

∣

2

. (4)

The free-space impedance, η is defined as
√

µ0/ε0. The total power transmitted is thus

Ptot =

∫

dΩ
dP

dΩ
(θ, φ). (5)

This can be expressed as a quadratic form of the weight vector

Ptot(~w) = ~wH
·P · ~w, (6)

where the superscript H refers to the conjugate transpose and the Hermitian matrix P is defined by its
elements,

Pij =
1

2η

∫

dΩ ~E∗

a,i ·
~Ea,j . (7)

It is useful to note that P is a positive definite matrix, meaning that all of its eigenvalues are real and
positive. Likewise the X polarized power pattern is

dX

dΩ
=
1

2η

∣

∣

∣

~Ea(0, 0) · eX

∣

∣

∣

2

(8)

The linear X polarized forward gain, GX, which is the numerator of the ratio to maximize, is simply

GX ≡ 4π
dX
dΩ (0, 0)

Ptot
=
2π

η

∣

∣

∣

~Ea(0, 0) · eX

∣

∣

∣

2

Ptot
, (9)

where eX is the linear X polarization basis vector. Note that any polarization may by optimized by replacing
eX with the appropriate basis vector. GX may be expressed as a ratio of quadratic forms:

GX(~w) =
~wH

·GX · ~w

~wH ·P · ~w
(10)

where the Hermitian matrix GX has elements

GXij =
2π

η

(

~Ea,i(0, 0) · eX

)∗ (

~Ea,j(0, 0) · eX

)

(11)

Because GX(~w) must be real and can never be less than zero, all eigenvalues of GX must be real and
non-negative.
The system temperature is the numerator of the ratio to optimize and consists of a constant receiver

temperature, Trec added to the radiation temperature seen by the receiver. For all simulations, a value for
Trec of 20 K was used. If an array of this type is to be competitive with a high-performance horn antenna,
a value not much greater than this must be realized in the hardware. It is implicitly assumed that the
receiver noise in each element is uncorrelated with that of other elements. The radiation temperature is the
gain-weighted average of the surrounding radiation temperature. The radiation temperature model that will
be used here is

Trad(θ, φ) =

{

Tsky above ground
Tground below ground

, (12)

where Tground = 290K and Tsky = ν[GHz]−2.5 × 3K for frequencies below 1 GHz, and Tsky = 3K above
1 GHz. All simulations were done the the antenna pointing at the zenith. With this temperature model, the
system temperature can be computed as

T =

∫

dΩ (Trad(θ, φ) + Trec)P (θ, φ)

Ptot
. (13)
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This can also be expressed as a ratio of quadratic forms:

T (~w) =
~wH

·T · ~w

~wH ·P · ~w
(14)

where the positive-definite Hermitian matrix T consists of elements

Tij =
1

2η

∫

dΩ (Trad(θ, φ) + Trec) ~E
∗

a,i(θ, φ) ·
~Ea,j(θ, φ). (15)

For an infinitesimal bandwidth, the quantity to be maximized in order to produce the most sensitive
beam is the ratio, R(~w), of linear X polarized forward gain to the system temperature, or

R(~w) ≡
GX(~w)

T (~w)
=

~wH
·GX · ~w

~wH ·T · ~w
. (16)

Since the matrix T is positive definite and Hermitian, it can be expressed as the product of a lower triangular
matrix, L and its conjugate transpose, LH , (i.e., T = L · LH) by Cholesky decomposition. Thus, with a
change of basis,

~w = LH−1
· ~z (17)

~wH = ~zH · L−1 (18)

GX = L ·M · LH (19)

R can be rewritten as

R(~z) =
~zH ·M · ~z

~zH · ~z
. (20)

It is clear that R(~z) is greatest when z is proportional to the eigenvector ofM corresponding to the greatest
eigenvalue. In fact, the greatest value that R(~z) can attain is the greatest eigenvalue of M. Because (a) both
GX and T are Hermitian, (b) T is positive definite, and (c) GX is non-negative definite, all eigenvalues ofM
must be real and non-negative. The greatest eigenvector can be isolated by repeatedly multiplying a guess
value of z by the matrix M. For the application here, the greatest eigenvalue is greater than the second-
greatest eigenvalue by many orders of magnitude, so after only a couple such multiplications, the vector
result will converge to the greatest eigenvector. To ensure that the guess vector contains some contribution
from the greatest eigenvector, many randomly generated vectors are screened; the best performing of these
vectors is then used as the guess vector. This method is often called the Power Method [5]. The optimal

value of ~w is then determined though Eqn. 17 after the repeated multiplication (i.e., ~wopt = LH−1
·Mn

·~zguess
for large n). A very similar method has been applied to adaptive beam-forming for mobile communications
[6].

3 Results of optimizations

Optimization was performed at eight frequencies: 266, 288, 311, 460, 480, 500, 760, and 780 MHz. Several
performance parameters for these frequencies are tabulated in Table 1. Note that the performance at 780 MHz
is far worse than at 760 MHz. It appears that something went awry in the generation of antenna patterns
from the element patterns (something didn’t converge?) The 780 MHz data will not be further considered
here.
More detailed plots for 311, 500, and 760 MHz follow in Figures 4–15. For each of these frequencies, the

optimized phased-array pattern, ~Ee, and the corresponding antenna pattern, ~Ea are shown. Also shown are
the azimuthally averaged antenna pattern spanning the full 180◦ of boresight angles and a diagram showing
the optimized weight vectors. The spillover cancellation is shown dramatically in Figures 6, 10, and 14.
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ν (MHz) 266 288 311 460 480 500 760 780
λ (m) 1.124 1.038 0.964 0.652 0.625 0.600 0.394 0.384
Trec (K) 20 20 20 20 20 20 20 20
Tsky (K) 82.2 67.4 55.6 20.9 18.8 17.0 6.0 5.6
Tground (K) 290 290 290 290 290 290 290 290
Gain (dBi) 36.3 37.0 37.6 40.8 41.1 41.5 44.7 42.8
Aeff (m2) 425.3 426.8 422.6 407.0 403.9 403.5 362.2 223.3
η 0.87 0.87 0.86 0.83 0.82 0.82 0.74 0.45
Tsys (K) 107.6 91.9 80.0 43.9 41.6 39.8 29.1 56.9
Tspill (K) 5.3 4.5 4.4 3.0 2.8 2.8 3.1 31.3
Aeff/Tsys (m2/K) 3.95 4.65 5.28 9.26 9.72 10.14 12.46 3.93

Table 1: Parameters of the array at the eight frequencies studied. The top section contains the parameters
used in for that column’s optimization. The bottom section contains the resultant performance parameters
after optimization. Efficiency, η, is the effective area, Aeff , divided by the unblocked aperture area (490.1 m

2

for a VLA antenna). The figure of merit that is optimized is effective area divided by system temperature.
The spillover temperature, Tspill, is defined here as Tsys − Trec − Tsky.

Figure 3: The EVLA sensitivity goal (solid line) and the estimated focal plane array performance (marks)
at 266, 288, 311, 460, 480, 500, and 760 MHz. 80% of the calculated performance is used as the estimate for
these frequencies, allowing for some resistive loss, phasing inefficiency, and other processing losses.

4 Tuning range

The useful tuning range of the array is limited by its performance at the extremes. At the lower frequencies
explored, the wavelength approaches the array’s size. This reduces the array’s ability to efficiently illuminate
the primary. This is because exciting the higher phased-array pattern multipoles become less easily excited.
At higher frequencies where the wavelength is less than about two element spacings, grating lobes are formed
causing higher system temperature due to insufficient sampling of the focal plane field. The power that is
redirected to sidelobes is taken from the intended primary beam. For the array studied, the useful tuning
range spans the frequencies studied, but does not likely extend much below 240 MHz (λ = 1.2 m) or above
800 MHz (λ = 0.38 m). A physically larger array would be required to extend high performance to frequencies
lower than ∼240 MHz. Smaller, more densely packed elements would be needed to extend performance above
800 MHz. It would probably make sense to use two arrays to cover the full 240 to 1200 MHz frequency range.
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Figure 4: The phased-array pattern optimized for
311 MHz. The contours show electric field magni-

tude,
∣

∣

∣

~Ee

∣

∣

∣
, in the forward hemisphere of the phased

array. A contour is drawn every 10% of the peak
value. The inner grey circle marks angle subtended
by the unpaneled portion of the primary. The outer
gray circle is rim of the primary. The dark black
circle denotes 90 degrees from boresight. This pat-
tern should be compared with the individual element
patterns in Figures 22 and 25.

Figure 5: The antenna pattern optimized for
311 MHz. The black contours show the co-polarized
gain. Contours are drawn every 3dB. The gray con-
tours show the cross-polarized gain. Again contours
are drawn every 3dB. The peak cross-polarized gain
is 33dB below the peak co-polarized gain.

Figure 6: Azimuthally averaged power pattern at
311 MHz of a single center element (dashed) and of
the optimally phased-array (solid).

Figure 7: A representation of the optimal element
weights at 311 MHz. The weight amplitude for a
given element is proportional to the length of the
triangle centered on that element. The phase is equal
to the angle of the triangle.

5 Co-phased bandwidth

While the tuning range spans the entire range of frequencies tested, a weight vector that optimizes perfor-
mance at one frequency will perform well only over a relatively small band about that frequency. Table 2
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Figure 8: The phased-array pattern optimized for
500 MHz. Note that optimization reduces the power
hitting the feed cone as this portion of the primary
does not contribute to forward gain.

Figure 9: The 500 MHz optimized antenna pat-
tern. The peak cross-polarized gain (gray contours)
is 32dB lower than the peak co-polarized gain (black
contours). Contours are spaced at 3dB intervals.

Figure 10: Azimuthally averaged power pattern at
500 MHz of a single center element (dashed) and of
the optimally phased-array (solid).

Figure 11: The weight pattern at 500 MHz.

shows ηphase the ratio of the performance at the test frequency, νtest, using the weight vector from the
optimize frequency, νopt, to the performance using weights optimized for νtest.
Table 2 suggests that around 500 MHz, the 70% performance bandwidth is about 65 MHz, or 13%. The

50% performance bandwidth is estimated to be about 100 MHz, or 20%. Simply tapering the weights of the
outer array elements may increase the phasing efficiency at a minimal cost of center frequency performance
since these weights change most rapidly with frequency.
A generally better and more uniform performance across a band of interest could likely be obtained by

optimizing over a finite bandwidth (δν of bandwidth at center frequency ν0). In the continuum limit, such
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Figure 12: The phased-array pattern optimized for
760 MHz.

Figure 13: The 760 MHz optimized antenna pat-
tern. The peak cross-polarized gain (gray contours)
is 32dB lower than the peak co-polarized gain (black
contours). Contours are spaced at 3dB intervals.

Figure 14: Azimuthally averaged power pattern at
760 MHz of a single center element (dashed) and of
the optimally phased-array (solid). The increase in
gain around 75◦ is due to scattering off the struts.
Enhanced gain between about 9 and 30◦ arises from
diffraction around the secondary. Note that the
phased beam illuminates the subreflector much less
than the just the central element and thus has much
reduced scattered power in this angular range.

Figure 15: The weight pattern at 760 MHz.

a function to optimize might be

R(~w; ν0, δν) =

∫ ν0+δν/2

ν0−δν/2

dν W (ν)
~wH

·GX(ν) · ~w

~wH ·T(ν) · ~w
, (21)
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νopt (MHz) 266 266 288 288 460 460 480 480 500
νtest (MHz) 288 311 266 311 480 500 460 500 460
Gain (dBi) 36.2 34.0 35.7 35.9 40.7 40.1 40.8 41.1 40.6
Aeff (m2) 362.6 187.5 376.2 285.4 368.7 289.7 405.2 369.6 389.1
Tsys (K) 102.8 127.9 124.6 106.6 46.1 63.0 49.9 45.72 62.2
Tspill (K) 15.4 52.2 22.4 31.0 7.3 26.0 9.0 8.75 21.3
Aeff/T sys (m2/K) 3.53 1.47 3.02 2.68 7.99 4.60 8.12 6.26 8.08
ηphase 0.76 0.28 0.76 0.51 0.82 0.45 0.88 0.80 0.68

Table 2: Table showing performance measured at frequency νtest for an array optimized for best performance
at frequency νopt. The fractional performance loss due to this mismatch is the “phasing efficiency”, ηphase.

where W (ν) is a band shaping function that can be used to match the bandpass to a desired form and the
two Hermitian matrices have gained frequency dependence. Optimizing this is no longer a simple exercise.
True wide-band optimization will be deferred to a future test.

6 Phased-Array Field of view

The performance optimization can be performed for Gains in directions other than boresight. By replacing
the boresight direction (0, 0) in Eqn. 11 with a general direction, (θbeam, φbeam), performance can be opti-
mized for any desired direction. One may wish to observe off axis if there are multiple targets within the
phased-array field of view that span multiple primary beams and if the back-end electronics can handle mul-
tiple simultaneous array phasings. The best attainable performance for an offset beam depends on (θbeam,
φbeam). As θbeam increases, the focal spot moves away from the center of the focal plane. When a substantial
fraction of the focal spot power is no longer intercepted by the array efficiency drops quickly. Also, as θbeam
increases, the projected area of the primary decreases, which is usually a much less substantial effect. The
optimized performance as a function of beam direction at 500 MHz is shown in Figure 16. It is worth noting
that the response as a function of displacement rolls off smoothly at 500 MHz. At 760 MHz, there are local
maxima in the performance at displacements which center the focal spot on a receiving element, an indica-
tion that at this frequency the spacing of the elements is important (Figure 17). This can be understood as
the beams in the sky narrowing as frequency increases to the point where neighboring element beams do not
overlap sufficiently and the sensitivity “between the beams” worsens. Polarization performance must suffer
in these circumstances since the X and Y polarized elements are not co-located. The optimized antenna
pattern becomes more asymmetric with larger sidelobes as θbeam increases as is shown in Figure 18. The
usable field of view for the simulated array is about 4◦.

7 Phasing errors

The performance of the array depends on the precision of the phasing. Errors in characterizing the absolute
patterns, including phase, and in setting weights will lead to weighting errors. The effect of weighting errors is
explored here by randomly dithering optimal weights. Independent normal-distributed errors were added to
the real and imaginary parts of each weight ranging in magnitude from zero to 10% of the value of the greatest
weight and the sensitivity was evaluated. This was repeated 1000 times for each error magnitude. The mean
sensitivity (solid line) and the sensitivity range encountered (gray region) are shown in Figures 19–21.
Depending on the mechanism used to phase the array, different forms of phase errors may be more

important. Table 3 summarizes the effects of pure phase errors and pure amplitude errors. Here the
amplitude errors are relative to each weight’s amplitude, rather than the amplitude of the greatest weight.
The errors are again drawn from Normal distributions. The amplitudes of these errors causing 1dB and 3dB
performance losses are listed.
The 311 MHz data is most sensitive to phasing errors. This likely arises from the extreme oversampling

(i.e., more degrees of freedom exist than are required to fully sample the focal plane) that occurs at this low
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Figure 16: 500 MHz optimal performance as a func-
tion of beam placement. The innermost contour rep-
resents 1.5dB performance loss, about 3◦ from bore-
sight. Each additional contour is 1.5dB worse. At
about 4◦ the center of the focal spot leaves the focal
plane.

Figure 17: 760 MHz optimal performance as a func-
tion of beam placement. The innermost contour rep-
resents 1dB performance loss, about 3◦ from bore-
sight. Each additional contour is 1dB worse. At
this frequency the element spacing is approaching
λ/2 and spacing effects cause the corrugated perfor-
mance which peaks when the focal spot centers on
an element.

ν (MHz) 311 500 760
Phase errors 1dB loss (deg) 6 6.5 18

3dB loss (deg) 11 18 35
Amp. errors 1dB loss (%) 3.5 11 33

3dB loss (%) 6.5 22 65

Table 3: The effect of pure phase errors and pure amplitude errors on performance. The values in the table
reflect the tolerances for the two types of errors required to achieve performance within 1dB and 3dB of the
expected performance. For example, on average an 18 degree RMS phase error will reduce the 500 MHz
performance by 3dB.

frequency which causes neighboring elements to be nearly degenerate. The addition of +δw to one element’s
weight and −δw to its neighbor’s has almost no effect on the phased antenna pattern in over-sampled cases.
However, the addition of antisymmetric weights to neighboring elements makes the phasing more sensitive
to phasing errors. It is seen that optimization takes advantage of these extra degrees of freedom and results
in a weight pattern with significantly anti-correlated neighboring weights as is shown in Figure 7.
Thus it is seen that the optimal weights derived for the lower frequencies are optimal only in a theoretical

sense. More stable weights with greater phasing bandwidths and a less stringent requirement on front end
linearity and dynamic range, are likely possible to derive by enforcing more smoothly varying weights or by
optimizing over a finite bandwidth. This may come at a modest cost in center frequency performance.
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Figure 18: 500 MHz beam shapes produced when forming beams off boresight. The displacements are in the
top row, left to right: (1◦, 1◦), (2◦, 2◦), and (3◦, 3◦), and in the bottom row, left to right: (4◦, 4◦), (3◦, 0◦),
(0◦, 3◦). Note that the beam starts to degrade quickly once the displacement reaches about 4◦. All contours
are at 3dB intervals starting 3dB below the peak gain.

Figure 19: The effect of phasing errors on performance at 311 MHz. The solid line is the mean sensitivity
relative to the optimal weight vector for weight perturbations up to 10% of the value of the greatest element
weight. The shaded area represents the range of sensitivities encountered by the 1000 trials.
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Figure 20: The effect of phasing errors on performance at 500 MHz.

Figure 21: The effect of phasing errors on performance at 760 MHz.

8 Nulling

A current hot topic in radio frequency interference mitigation is nulling the antenna response in the direction
of a known interferer, (θint, φint). This can be naturally incorporated in the formulation of optimization in
Section 2.4 by adding to the radiation temperature, Trad(θ, φ) an additional contribution from this unwanted
source:

Tint(θ, φ) = K δ(θ − θint) δ(φ− φint), (22)

where K is a very large number; in particular, its value should be the equivalent brightness temperature of
the RFI source. The Dirac delta functions above could be replaced with any pattern representing the true
extent of the interferer if it is not a point. The null is made deeper with a larger value of K. The on-axis
performance decreases as the null is made deeper and wider. Multiple interferers can be simultaneously
nulled, with a correspondingly larger impact on performance.
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9 Conclusions

The simulated array appears to perform well over a substantial tuning range and has a useful co-phased
bandwidth of at least 13%. The performance is comparable to or better than other options for low frequency
feeds for the VLA. These positive results hinge on a few assumptions. Here we assumed that the receiver
temperature is 20 K at room temperature. Performance at this level has yet to be demonstrated. The
combination of matching and resistive loss is assumed small enough to ignore. For this feed to be competitive
with high performance (and expensive to deploy) prime focus horn receivers, these losses must not exceed
about 25%.
There is still more work to do before Vivaldi arrays as focal plane feeds are understood at a useful level.

Three major questions should be addressed in upcoming studies : (1) How can the array be optimized over
a wider bandwidth with a given set of weights? (2) How effective is interference nulling and what impact
does it have on performance. (3) How does receiver noise coupling affect performance? Practical experience
using hardware will help understand additional aspects such as noise coupling, resistive losses, manufacturing
issues, dynamic range/linearity requirements for the front ends, and achievable phasing precision.
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A Grasp8 input files

I this section, example Grasp8 files are shown. Only the script portion for element 12 evaluated at 500 MHz
is shown. The following is the Grasp8 “Ticra Object Repository” or “.tor” file used to describe the geometry
of the feed, antenna, and the two grid surfaces on which fields were computed. Note that the input files
vla_pri.sfc and 500MHz_feed_12.cut are not listed here due to their length.

Field_Frequency frequency

(

list_freq : sequence(0.500000 GHz)

)
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VLA_pri_surf rotational

(

file_name : vla_pri.sfc,

r_unit : m,

z_unit : m,

r_factor : 1.0,

z_factor : 1.0,

n_points : 500,

tip : off,

list : off

)

VLA_pri_rim elliptical_rim

(

centre : struct(x:0 m, y:0 m),

half_axis : struct(x:12.5 m, y:12.5 m),

rotation : 0

)

VLA_primary reflector

(

surface : ref(VLA_pri_surf),

rim : ref(VLA_pri_rim)

)

VLA_pri_PO_12 standard_po

(

frequency : ref(Field_Frequency),

scatterer : ref(VLA_primary),

po_points : struct(po1:150, po2:400),

ptd_points : sequence(struct(edge:1, ptd:400)),

file_name : VLA_pri_12.cur

)

VLA_sub_surf regular_grid

(

file_name : vla_sub.sfc,

xy_unit : m,

z_unit : m,

xy_factor : 1.0,

z_factor : 1.0,

list : off,

)

VLA_sub_rim elliptical_rim

(

centre : struct(x:-0.115561 m, y:0 m),

half_axis : struct(x:1.163585 m, y:1.152108 m),

rotation : 0

)

VLA_sub reflector

(

surface : ref(VLA_sub_surf),

rim : ref(VLA_sub_rim),

centre_hole_radius : 0 m

)

VLA_sub_PO standard_po

(

frequency : ref(Field_Frequency),

scatterer : ref(VLA_sub),

po_points : struct(po1:30, po2:90),
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ptd_points : sequence(struct(edge:1, ptd:90)),

)

Strut_Coor_Sys_1 coor_sys

(

origin : struct(x:7.550000 m, y:0.000000 m, z:1.594036 m),

x_axis : struct(x:0.777846, y:0.000000, z:0.628455),

y_axis : struct(x:-0.000000, y:1.000000, z:0.000000)

)

Strut_Coor_Sys_2 coor_sys

(

origin : struct(x:0.000000 m, y:7.550000 m, z:1.594036 m),

x_axis : struct(x:0.000000, y:0.777846, z:0.628455),

y_axis : struct(x:-1.000000, y:0.000000, z:0.000000)

)

Strut_Coor_Sys_3 coor_sys

(

origin : struct(x:-7.550000 m, y:0.000000 m, z:1.594036 m),

x_axis : struct(x:-0.777846, y:0.000000, z:0.628455),

y_axis : struct(x:-0.000000, y:-1.000000, z:0.000000)

)

Strut_Coor_Sys_4 coor_sys

(

origin : struct(x:-0.000000 m, y:-7.550000 m, z:1.594036 m),

x_axis : struct(x:-0.000000, y:-0.777846, z:0.628455),

y_axis : struct(x:1.000000, y:-0.000000, z:0.000000)

)

VLA_struts polygonal_struts

(

cross_section : sequence(

struct(x:0.400000 m, y:0.135000 m),

struct(x:0.000000 m, y:0.135000 m),

struct(x:0.000000 m, y:-0.135000 m),

struct(x:0.400000 m, y:-0.135000 m) ),

position : sequence(

struct(coor_sys:ref(Strut_Coor_Sys_1), z1:0 m, z2:9.799569 m),

struct(coor_sys:ref(Strut_Coor_Sys_2), z1:0 m, z2:9.799569 m),

struct(coor_sys:ref(Strut_Coor_Sys_3), z1:0 m, z2:9.799569 m),

struct(coor_sys:ref(Strut_Coor_Sys_4), z1:0 m, z2:9.799569 m) )

)

VLA_struts_PO polygonal_struts_po

(

frequency : ref(Field_Frequency),

scatterer : ref(VLA_struts),

po_points : sequence(struct(side:-1, n_length:80, n_phi:6) ),

ptd_points : sequence(struct(edge:-1, ptd:80) ),

)

Feed_Coor_Sys_12 coor_sys

(

origin : struct(x:0.000000 m, y:-0.630000 m, z:9.000000 m),

x_axis : struct(x:1.000000, y:0.000000, z:0.000000),

y_axis : struct(x:0.000000, y:-1.000000, z:0.000000)
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)

Feed_Pattern_12 tabulated_feed

(

frequency : ref(Field_Frequency),

file_name : 500MHz_feed_12.cut

)

Feed_System_12 feed

(

coor_sys : ref(Feed_Coor_Sys_12),

feed_definition : ref(Feed_Pattern_12),

frequency : ref(Field_Frequency)

)

Full_Beam_12 spherical_field_grid

(

frequency : ref(Field_Frequency),

grid_type : theta_phi,

x_range : struct(start:0, end:179.250000, np:240),

y_range : struct(start:0, end:359.462687, np:670),

polarisation : theta_phi,

file_name : 500MHz_full_beam_12.grd

)

Beam_12 spherical_field_grid

(

frequency : ref(Field_Frequency),

grid_type : uv,

x_range : struct(start:-0.130900, end:0.130900, np:79),

y_range : struct(start:-0.130900, end:0.130900, np:79),

polarisation : linear,

file_name : 500MHz_beam_12.grd

)

Below is the “Ticra Command Input” or “.tci” file that executes the antenna analysis.

FILES READ ALL "C:\Documents and Settings\brisken\Desktop\500MHz\500MHz.tor"

#

COMMAND OBJECT VLA_struts_PO get_currents ( source : ref(Feed_System_12)) Cmd_133

COMMAND OBJECT VLA_pri_PO_12 get_composite_currents ( source : &

sequence(ref(Feed_System_12),ref(VLA_struts_PO))) Cmd_134

COMMAND OBJECT VLA_struts_PO get_composite_currents ( source : &

sequence(ref(Feed_System_12),ref(VLA_pri_PO_12))) Cmd_135

COMMAND OBJECT VLA_sub_PO get_composite_currents ( source : &

sequence(ref(VLA_struts_PO),ref(VLA_pri_PO_12))) Cmd_136

COMMAND OBJECT Full_Beam_12 get_field ( source : ref(Feed_System_12)) Cmd_137

COMMAND OBJECT Full_Beam_12 add_field ( source : ref(VLA_pri_PO_12)) Cmd_138

COMMAND OBJECT Full_Beam_12 add_field ( source : ref(VLA_sub_PO)) Cmd_139

COMMAND OBJECT Full_Beam_12 add_field ( source : ref(VLA_struts_PO)) Cmd_140

COMMAND OBJECT Beam_12 get_field ( source : ref(Feed_System_12)) Cmd_141

COMMAND OBJECT Beam_12 add_field ( source : ref(VLA_pri_PO_12)) Cmd_142

COMMAND OBJECT Beam_12 add_field ( source : ref(VLA_sub_PO)) Cmd_143

COMMAND OBJECT Beam_12 add_field ( source : ref(VLA_struts_PO)) Cmd_144

#
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B Element patterns

Element patterns for the 25 unique elements identified in Figure 2 are shown for 311 MHz, 500 MHz, and
760 MHz in Figures 22 23, and 24 respectively. Note their variation with frequency and position within
the array. Because the array was modeled with an infinite backplane, there is no emission from beyond 90◦

boresight angle, thus only the forward hemisphere is shown.

Figure 22: 25 element beam patterns at 311 MHz. Contours are drawn every 20% in voltage. The inner
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circles
represent the rim of the primary.
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Figure 23: 25 element beam patterns at 500 MHz. Contours are drawn every 20% in voltage. The inner
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circles
represent the rim of the primary.
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Figure 24: 25 element beam patterns at 760 MHz. Contours are drawn every 20% in voltage. The inner
grey circles represent the angle subtended by the unpaneled portion of the primary. The outer gray circles
represent the rim of the primary.
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C Antenna patterns

Antenna patterns for the 25 unique elements identified in Figure 2 are shown for 311 MHz, 500 MHz, and
760 MHz in Figures 25 26, and 27 respectively. Note their variation with frequency and position within the
array.

Figure 25: 25 antenna beam patterns corresponding to the 25 unique element patterns at 311 MHz. Contours
are drawn at 3dB intervals
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Figure 26: 25 antenna beam patterns corresponding to the 25 unique element patterns at 500 MHz.
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Figure 27: 25 antenna beam patterns corresponding to the 25 unique element patterns at 760 MHz.
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