
EVLA Memo No. 39

Wayne Koski
April 2002

Application Note Using the Serial Peripheral Interface (SPI) For EVLA

SPI is a form of synchronous serial transmission. The basic aspect of SPI is that each SPI device has a
serial input, a serial output, and serial clock. One SPI device will be considered to be the master and all
additional SPI devices will be considered slaves. The master is simply the device that provides the serial
clock and controls the data transfer.

The simplest form of SPI communications is one master and one slave. In this form, only the three lines
mentioned above need to be connected in the proper fashion. If more then one slave exists, then an
additional line usually called the slave select line (SS) is used to select a particular slave. The SS line acts
as chip select lines, as well as a slave output enable line.

For the EVLA, it is planned that the MIB processor will always act as the master SPI device. All SPI
devices on the User Device shall be slaves. Also, it is expected that the MIB will have to support multiple
SPI devices, so the SPI slave components must have the SS line function. Figure 1 shows the basic
connection need to connect the MIB SPI Master to multiple SPI slaves. The line designated Master-
Output-Slave-Input (MOSI) simply states that the Master-Output connects to all Slave-Inputs. The same is
true for the Master-Input-Slave-Output (MISO) in that the Master-Input must connect to all the Slave-
Outputs. The SPI Clock (SCLK) is connected together for all the SPI devices. As stated before, the MIB is
the source for the SPI Clock. The active low Slave Select (SS*) lines must be generated one per slave
device. It can be generated directly from the MIB or via digital logic controlled by the MIB. The first
slave shows the method to daisy chain multiple slaves together, where the SS* line on its low to high
transition acts as a data valid signal for each device. This methodology has the problem in that when one
needs to update one slave in the chain, the MIB must remember the other slave values. Especially after a
power failure, it may in fact be impossible to load the current values from the MIB, so the daisy chain
method would best be avoided.

MIB
MOSI
MISO
SCLK

SLAVE #1-A
MOSI MISO

SCLK

SLAVE #1-B
MOSI MISO

SCLK

SLAVE #1-C
MOSI MISO

SCLK

SLAVE #2
MOSI
MISO
SCLK

SLAVE #3
MOSI
MISO
SCLK

SS* SS* SS*

SS*

SS*

SS0*
SS1*
SS2*

Figure 1: SPI Connections – MIB Master to Slaves

The actual communication using SPI is straightforward. The master and slave simply form a ring buffer,
such that when the master transmits its buffer to the slave, the slave transmits its buffer to the master. One
transition of the clock shifts the data out of each buffer. The next transition of the clock latches the data

into each buffer. Figure 2 shows the timing for a byte transfer. In this transfer, the SS* is driven low to
select the specific slave. Next the master clocks the data transfer. In this case, the falling edge of the clock
causes the shift registers to place the next data bit onto MISO and MOSI. On the rising edge, this bit will
be sampled and loaded into each buffer. When the transfer ends, the SS* will return high, thus deactivating
the slave. The master has complete control over the clock’s idle state, the transfer rate, which clock edge
that shifts/latches the data, MSB/LSB first, and how many bits are to be transferred. Having that level of
control calls for standardization however, each slave may require different setups. Therefore the M&C will
standardize on the following:

● Clock Idle = High
● Clock Transition = Low to High Transition Latches Data
● Clock Speed = 6 MHz
● Transfer Size = Byte (8 bits)
● MSB/LSB First = MSB First

Designers should select SPI Devices with the above in mind, in order to allow for simplified software
management. Usage of logic gates that changes any of the above characteristics can easily implement
different SPI devices. If an unusual SPI device is selected which doesn’t fit the above, and gating cannot
provide for its operation, then it would have to be coded as a special case. This will delay development
time for devices.

SS*

SCLK

MISO, MOSI

Figure 2: Basic SPI Transfer Timing

The next aspect is how to generate the SS* lines for multiple slaves. The TC11IB device can supply up to
ninety-six I/O lines for this purpose. However, many of these lines are dedicated to other purposes so
external generation of these SS* is going to be necessary. The basic idea for this, is to provide an address
value to the hardware, which then decodes the value into a single SS* line. This address value can be
passed to hardware via the SPI bus or by writing it out to a defined memory location using the parallel bus.
Figure 3 shows a method of developing the SS* lines via the SPI bus. The circuit design uses Xilinx logic
blocks for their FPGA series. It could be easily implemented into other hardware devices as the designer
sees fit. For this design the MOSI line feeds a shift register at U3. In order for the shift register to shift in a
new address value the MIB must set ADDRSEL* to the active low state. ADDRSEL* also disables U12 so
that when a new address is being loaded, it will not cause SS/ lines to glitch during the shift period. The
SPICLK is the SPI Clock with the assumption that the low to high is the transition to latch a bit. The
PORST* is the power on reset line that clears the shift register and also via U3-Q15 disables U12. This
hardware provides for 32K addresses and therefore should provide enough capability for very complex SPI
buses. When DATASEL* is driven low, provided U3-Q15 had a high shifted into it, will cause one of the
SS* lines to go low. This occurs because DATASEL* enables U12 that feeds the U8 decoder. One output
of U8 will enable another decoder such as U4. The single output of the secondary decoder will be inverted
and that line then drives a single SS* to the active low state. Additionally the U8 outputs are also inverted
and brought out in order to provide control over the external SPI bus by grouping it into banks of sixteen.
By simple logic expansion, each U8 output can control another 16 line decoder, so this design can provide

a total of 256 SS* lines. In order to produce more lines, one would need to supply an additional layer of
decode logic. Finally, the MISO line isn’t needed, as setting the address is a write-only function.

For each SPI device that is selected, it will have a protocol in order to utilize it in the design. Designers
should attempt to communicate with other designers to find SPI devices that can be used across designs.
This will also simplify the software development, in that the number of protocols would be minimal. For
the unique case where we might have MIB to microprocessor communications, NRAO would generate a
standard protocol for that communication. In fact via ALMA, a protocol was established by NRAO for this
purpose. It would be necessary for the EVLA to modify this protocol in order to use it more effectively.

SS20*

SS26*

U14

INV16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

SS21*

U2

IBUF

U7

OPAD16

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15

SS38*

U20

IBUF

U18

IBUF

SS6*

SS24*

SS35*

SS58*

SS55*

BUSBANK1*

U26

OBUF16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

U6

OBUF16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

U12

AND3B1

SPICLK

U21

IPAD

SS19*

SS34*

U11

INV

SS31*

SS40*
SS39*

SS1*

SS44*

U22

IBUF

SS28*

U17

IPAD

U32

INV4

I0
I1
I2
I3

O0
O1
O2
O3

SS41*

ADDRSEL*

SS59*

SS22*

U23

INV

BUSBANK2*

SS7*

SS36*

SS52*
SS53*

SS30*

U27

OPAD16

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15

SS8*

U15

OBUF16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

SS13*

SS32*

U29

INV16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

SS17*

SS50*

U1

IPAD

U25

INV16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

PORST*

BUSBANK3*

SS23*

SS60*

SS4*

SS12*

U8

D4_16E

A0
A1
A2
A3

E

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

SS51*

SS14*

SS16*

SS33*

SS48*

SS47*

SS15*

U24

D4_16E

A0
A1
A2
A3

E

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

SS29*

U9

IPAD

SS9*

SS62*

U5

INV16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

SS46*

SS11*

SS61*

SS0*

U31

OPAD16

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15

SS37*

U28

D4_16E

A0
A1
A2
A3

E

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

U34

OPAD4

O0
O1
O2
O3

SS18*

SS63*

MOSI

U13

D4_16E

A0
A1
A2
A3

E

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

SS2*

DATASEL*

SS25*

SS27*

SS43*

SS45*

SS54*

U30

OBUF16

I0
I1
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12
I13
I14
I15

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9

O10
O11
O12
O13
O14
O15

SS5*

SS3*

SS56*

U10

IBUF

U19

IPAD

U16

OPAD16

O0
O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15

SS10*

SS49*

SS57*

BUSBANK0*

U3

SR16CE

SLI

CE
C
CLR

Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q11
Q12
Q13
Q14
Q15

U4

D4_16E

A0
A1
A2
A3

E

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15

U33

OBUF4

I0
I1
I2
I3

O0
O1
O2
O3

SS42*

Figure 3: SS* Line Generator Using SPI Bus

In order to minimize RFI generation, the MIB can provide LVDS signals into and out of the MIB for
MOSI, MISO, SCLK, ADDRSEL*, and DATASEL* for long distances. Designers should feedback
whether or not for short distances, the MIB provides single-ended or LVDS signals.

