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September 18, 2013

1 Introduction

Our project, 21-SPONGE (“21-cm SPectral Line Observations of Neutral Gas with the (E)VLA”),
is a survey of high sensitivity HI absorption lines. We aim to reach RMS noise levels in optical depth
of ∆τ ∼ 5 × 10−4 and after completing the first third of the survey (20/58 sources), our median
RMS noise is ∆τ ∼ 7×10−4. This high sensitivity allows us to detect both wide (∆v > 5 km/s) and
narrow (∆v < 3 km/s) absorption lines with optical depths of τ ∼ 0.001 or greater. Our ultimate
goal is to measure the temperature and column density distributions of the warm and cold neutral
media (WNM and CNM) directly in absorption. Especially in the case of the WNM, absorption
lines are very wide and shallow and only a handful of direct detections exist to date. Therefore we
require extremely high sensitivity and stable baselines in order to reliably detect these lines.

To achieve such high sensitivity, we require very sensitive bandpass solutions, and typically allo-
cate up to 40 percent of every observation to bandpass calibration overhead. In order to minimize
noise levels in bandpass solutions, we have experimented with averaging bandpass observations ac-
quired on different days, spaced in time by up to one week. These solutions demonstrate remarkable
stability in time. In the process of investigating this stability, we find that the bandpass solutions
contain a sinusoidal “ripple” with a period of 59 kHz (or ∆v ∼ 12 km/s at our velocity resolution)
and amplitude of ∼0.0015. The period, amplitude and phase of this ripple are constant between
array configurations and time of year. We are able to successfully model and remove this feature
from the absorption line profiles, so that we are able to detect individual lines with widths greater
than ∆v ∼ 1 km/s and up to ∼ 20 km/s. We believe that the ripple is caused by the finite impulse
response (FIR) filters applied prior to correlation which are used to shape the bandpass. The fil-
ters produce a bandpass ripple in the solution, and although this has not been observed before at
this level, this effect is expected and confirmed by the correlator engineering group at NRAO. The
constant relative amplitude, phase and period of the ripple can all be explained in this context.

2 Methods

2.1 Observing Setup

For the observations, we use three separate, standard L-band configurations, each with one dual
polarization IF of 500 kHz bandwidth covered by 256 channels (at 1.95 kHz per channel). One is
centered at 1.420408 GHz (near the HI line rest frequency, standard), one at 1.421908 GHz (1.5
MHz, or about 300 km/s, higher than the HI rest frequency, called high) and one at 1.418908
GHz (1.5 MHz lower, called low). We use the “high” and “low” configurations for observing our
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bandpass calibrators in order to avoid the typically strong emission and absorption lines that would
contaminate the profiles of the bandpass calibrators at the HI rest frequency. Because we normalize
our solution with respect to the continuum level, the absolute phase change associated with this
frequency switching method is not an issue. We use the standard configuration for observing target
sources and measuring HI absorption.

2.2 Data Reduction

We reduce all data using AIPS. After flagging and initial bandpass calibration of the “high” and
“low” frequency offset bandpass observations using BPASS, we use the task BPLOT to examine
the solution from each antenna separately. After calibration, we combine the “high” and “low”
observations and re-compute the bandpass solution. We then export the final bandpass table using
POSSM for further analysis outside of AIPS.

3 Results

In Figures 1a and 2a we show two examples of the bandpass solutions. We have zoomed in on the
central channels so that the structure of the solution is easier to see. In addition to a linear slope
in the bandpass solution, we observe a sinusoidal ripple that appears to have a roughly constant
period. We also show the absorption profiles observed in the directions of 3C298 and PKS0531,
given these bandpass solutions (Figure 1b and 2b). In the bottom panels we zoom in at the top of
the profiles to show that the bandpass shape was successfully modeled and the baselines are stable
and flat. We include our Gaussian fits to these line profiles to demonstrate that we are able to
detect wide, shallow lines, and include relevant parameters in the figure captions.

To investigate the stability of the bandpass ripple itself, we extract bandpass solutions from
23 observations, spanning array configurations and configuration moves between A and C arrays.
The observations included were conducted between 03/11 and 07/12. Table 1 contains information
about each observation, as well as parameters extracted from fitting the ripple (explained below).

3.1 Fitting Process

In order to estimate the quantitative properties of the ripple, we first fit and remove the linear
slope and zoom in on the central channels of the bandpass solution (channels 50-200 out of a total
256). The linear slope does not affect our ability to detect wide absorption lines, and we are only
interested in determining the parameters of the ripple and correcting for it.

After removing the linear slope, we apply a narrow filter to the Fourier transform of the bandpass
solution to extract the dominant periodic signal within the noise. In Figure 3 we display an example
of the results of this process, using the bandpass solution from the PKS0531 observation (Figure 2a).
An extended explanation with detailed plots is included in Appendix A.

It is apparent from Figure 3 that the solution is dominated by one periodic component with
additional (but much weaker) harmonics. To determine the frequency of the dominant periodic
component (and its associated harmonics), we compute a periodogram following the method of
Scargle (1982). A periodogram is a decomposition of a signal into a linear combination of periodic
functions (here sines and cosines), displayed in the form of power as a function of the frequency of
each component. We display the periodograms of all 23 solutions in Figure 4. We normalize them
all so that the maximum power per frequency is equal to 1 for easier comparison.
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(a) 3C298 bandpass solution (b) 3C298 absorption profile

Figure 1: (a): An example bandpass solution, zoomed slightly into the central channels to display
the apparent sinusoidal ripple in the solution. This is from the 3C298 observation, see Table 1 for
more details. (b): Absorption profile from the target observation (top panel), and a zoom-in on the
top of the profile to show that the bandpass ripple was successfully removed. The RMS noise in
absorption is ∆τ = 0.0008. We fit two Gaussian components (red dashed lines), including a wide,
shallow component with central velocity v = −2.4± 0.6 km/s, width ∆v = 13±2 km/s and height
τ = 0.0032± 0.0004.

(a) PKS0531 bandpass solution (b) PKS0531 absorption profile

Figure 2: Same as Figure 1 but for a stronger absorption line source, PKS0531. The RMS noise
in absorption is ∆τ = 0.0005. We fit six Gaussian components (red dashed lines), inculding a
shallow component with central velocity v = −25 ± 4 km/s, width ∆v = 12±9 km/s and height
τ = 0.0015±0.001. The parameters of this component are more uncertain in the presence of a more
complex, blended line profile than in Figure 1.

From Figure 4, we can see that all solutions have a dominant component with a period of about
30 channels, and the additional harmonics are weaker by factors between 5 and 10. At our frequency
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Table 1: Bandpass Solution Parameters

Information: Fit Parameters:
Target Name Obs. Date Array Config. RMS noise1 Amplitude2 Period2 Phase3

(per channel) (channels) (channel)

3C120D1 03/11 B 0.00049 0.0014 30.1 120
3C120D2 03/11 B 0.00047 0.0014 29.9 120
3C286 05/11 B 0.00064 0.0016 29.9 122
3C225BD1 05/11 BnA 0.00049 0.0015 30.0 121
3C225BD2 05/11 BnA 0.00049 0.0015 30.3 121
3C225BD3 05/11 BnA 0.00042 0.0013 30.1 120
4C12.50 05/11 BnA 0.00048 0.0014 30.0 120
3C345 06/11 BnA-A 0.00074 0.0017 30.1 120
3C298 06/11 BnA-A 0.00057 0.0015 29.8 121
4C32.44D1 05/11 BnA-A 0.00040 0.0014 29.9 122
4C32.44D2 06/11 BnA-A 0.00063 0.0015 29.9 120
4C32.44D3 06/11 BnA-A 0.00057 0.0015 29.8 122
3C48 08/11 A 0.00048 0.0014 30.0 120
4C16.09 09/11 A 0.00037 0.0014 30.0 120
4C16.09.2 09/11 A 0.00031 0.0013 29.9 120
3C133 09/11 A-D 0.00035 0.0014 30.1 120
PKS0531 09/11 A-D 0.00031 0.0013 29.9 120
3C111 04/12 C 0.00042 0.0014 29.9 120
3C154D1 04/12 C 0.00057 0.0017 30.2 122
3C154D2 04/12 C 0.00033 0.0013 29.9 120
3C123 05/12 CnB 0.00041 0.0015 30.1 120
3C138 05/12 CnB 0.00041 0.0014 29.9 122
3C410 07/12 B 0.00057 0.0016 29.6 123

1: the RMS noise calculated in the residuals of the bandpass solution after removing the ripple model.
2: calculated using the periodogram analysis of the solution (i.e. these are the parameters of the dominant
component)
3: the location of the start of a new sine period close to the center of the solution.

resolution of 1.95 kHz per channel, 30 channels corresponds to about 59 kHz. The amplitude and
period extracted from each solution are listed in Table 1, as well as the phase of the solution
(calculated as the channel location of the start of a new sine period close to the center). The rms
noise values listed in Table 1 are calculated from the residuals of the fit in Figure 3 (see Appendix A,
Figure 7a).

From Table 1 we conclude that the amplitude, period and phase of the ripple are stable between
all currently tested observations.

3.2 Function of Antenna?

To test if the presence of the ripple is a function of particular antennas, we separated the bandpass
solutions into three groups of about 9 antennas (i.e antennas 1-9, 10-18, 19-28). After fitting the
solutions from these antenna subsets, we find that the ripple exists at a similar power as in the full
solution in all cases. Therefore, we conclude that the effect is not antenna-based.
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Figure 3: The original bandpass solution from the PKS0531 observation (Figure 2) with linear slope
removed (red dashed). The Fourier-filtered fit (see text and Appendix A) is overlaid (solid black).

4 Time Averaging

In addition, we test the method of combining bandpass observation data between separate observa-
tions, spaced in time by hours, days and weeks. This is another test of the stability of the bandpass
solution. We find that combining observations improves the noise level in the bandpass solution,
although not by the theoretically expected amount (i.e. by the square root of the increase in total
time). In the future, we plan to investigate this further by combining bandpass solutions after
removing a model of the ripple.

In Figure 5 we show an example of this method in the form of the bandpass solution before and
after combining observations. All relevant information about the separate observations are included
in Table 2 along with additional information about several additional tests. We note the RMS noise
values in Table 2 are higher than in Table 1 because they were calculated using ranges of channels
in the bandpass solution before removing the fit to the periodic component or ripple. However,
we are interested in the improvement in the noise level compared with theoretical expectations,
so its absolute value is not as important for this particular argument. The noise levels improve
consistently by values between 70 and 90 percent of the theoretically expected improvement.

5 Conclusions

We conclude that there is a 59-kHz ripple present in all bandpass solutions from our observations,
and this ripple is stable in amplitude, phase and period over time and between configurations. Given
the properties we derive here, we conclude that it is an effect caused by the application of finite
impulse response (FIR) filters prior to correlation. The filters introduce a bandpass ripple in the
solution. This effect is expected and confirmed by the correlator engineering group at NRAO, and
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Figure 4: Periodogram results for all 23 solutions plotted together, normalized to 1 for easier
comparison.

this is the first time it has been observed at this level. The constant relative amplitude, phase and
period can all be explained in this context.

Furthermore, we have found that bandpass solutions are stable in time and can be combined to
improve the solution over time periods between hours and many days. Although the improvements
to the noise in the bandpass solution do not quite follow theoretical expectations based on the
increase in total observing time, the noise does improve in all cases we have tested so far. It will be
instructive to test this further and determine the maximum amount of time between observations
that this method will work for.
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A Fourier Filtering Analysis

After removing the linear slope from the bandpass solution from the PKS0531 observation (see
Figure 2), we isolate the central 200 channels to avoid the bandpass edges. See Figure 3 (or
Figure 6b) for an example of the results of this simple process, shown by the dashed red line.

We then compute the Fourier transform (FT) spectrum of this flattened, zoomed solution (see
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(a) (b)

Figure 5: (a): bandpass solution for 3C225-D1 (day one of a series of three observations), computed
from 33.4 minutes of observation time. (b): bandpass solution from 3C225-D1 plus two additional
days of observation, comprising 103.5 minutes total. The noise level decreases by a factor of 1.3,
although not by the theoretically predicted amount of

√
103.5/33.4 ∼ 1.8. See Table 1 for more

details about these and other observations.

Table 2: Time averaging of bandpass solutions

Target BP Obs. RMS Obs. time Theor. Actual Imprvmnt
Name Name Date in BP1 (min) Imprvmnt2 Imprvmnt3 Ratio4

3C123 3C147 05/16/12+05/18/12 0.0010 88.6 1.4 1.1 0.8
3C138 3C147 05/19/12+05/20/12 0.0011 85.9 1.4 1.2 0.9
All ” ” 0.0009 174.5

3C410 3C410 07/08/12 0.0022 80 1.4 1.1 0.8
3C454.3 3C454.3 07/08/12 0.0016 84 1.4 1.2 0.9
All ” ” 0.0016 164

3C225D1 3C147 05/13/12 0.0013 33.4 1.8 1.3 0.7
3C225D2 3C147 05/17/12 0.0012 30.2 1.8 1.2 0.7
3C225D3 3C147 05/20/12 0.0011 39.9 1.6 1.1 0.7
All ” ” 0.0010 103.5

4C32.44D1 3C286 05/22/11 0.0011 30.8 1.5 1.1 0.7
4C32.44D2 3C286 06/03/11 0.0012 41.1 1.3 1.2 0.9
All ” ” 0.0010 71.9

1: calculated over a range of channels in the bandpass solution before removing the fit to the ripple.
2: theoretical improvement to noise level based on additional obs time, ∆t (i.e. by

√
∆t).

3: actual improvement to noise level based on additional obs time.
4: ratio of actual/theoretical improvement

Figure 6a). Next, we multiply this FT spectrum with a simple step function filter to isolate the
dominant periodic components. The boundaries of the filter are shown in Figure 6a as vertical
dashed lines. We then compute the inverse FT of the filter-multiplied FT spectrum (displayed as
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the thick black line in Figure 6a) to model the periodic component. These results are displayed in
Figure 6b, as well as in Figure 3 by the solid black line.

(a) (b)

Figure 6: (a): FT spectrum of the bandpass solution from the PKS0531 observation (see Figure 2),
with the boundaries of the applied step-function filter overlaid as dashed lines. (b): Model of the
bandpass solution (solid black), computed as the inverse FT of the filter-convolved FT spectrum of
the bandpass solution. The bandpass solution is overlaid as the dashed red line. “x” is a normalized
channel (or frequency) parameter, used to simplify the caluclation.

As a test of the success of this model, we compute the residuals by subtracting the model from
the bandpass solution (see Figure 7a). We then compute a simple histogram of these residuals in
order to observe if they are well-represented by a Gaussian distribution, which we expect if the
model is reasonable (see Figure 7b). From this, we can conclude that the model does a reasonably
good job of isolating the dominant periodic components of the bandpass solution. We compute the
rms noise in these residuals as an indicator of the noise level in the bandpass solution that is not
due to the periodic components. These values for all solutions are listed in Table 1.
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(a) (b)

Figure 7: (a): Residuals of the FT model to the bandpass solution displayed in Figure 6 (i.e.,
bandpass solution minus model). “x” is a normalized channel (or frequncy) parameter, used to
simplify the calculation. (b): Histogram of the residuals to check if they are well-represented by a
Gaussian distribution, as would be expected in the case of a successful model. A Gaussian model
is overlaid (solid black line) to illustrate this.
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