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Abstract

The algorithm W-projection ([paper]) implemented in CASA has been successfully tested using
some data. But still the restrictions of this algorithm are not clear. In this memo we point out to the
possible problems at the case of poor UV coverage for some W layers. We have evaluated analytically
the convolution function which is used at the W-projection algorithm to project (recalculate) the
measured visibilities (corrupted by the W term) to the visibilities corresponded to the ideal obser-
vations (W=0). The found analytical equation for the convolution function allows to find a simple
expression for its width for arbitrary field of view and W. This width is much wider in some cases
than the upper limit (70x70 pixels) cited at the [paper] and therefore the computation time may
not be as small as is cited there. We suggest multiplication by the exp(jnWI?) at the image plane
(instead of the convolution at the UV plane). Such a way to correct the W-term may give the gain
in the computation time.

1 Introduction

At most cases of the aperture synthesis, the both brightness distribution B(l,m) and the measured vis-
ibilities Vis(u,v) are two dimensional functions related through the two dimensional Fourier transform.
The modern algorithms of deconvolution (CLEAN, Method maximum entropy) have been successfully
applied to restore the image of the source using a two dimensional set of the measured visibilities (U,V).
But actually the set of measured visibilities is three dimensional (U,V,W). The effect of the W term
can be ignored if the field of view is rather narrow, but can not be ignored for the rather wide field of
view. Many different ideas have been considered to remove effect of the W term. One of them is idea
of projection (recalculation) the measured visibility with W # 0 into the corresponding visibilities with
W = 0. Having carried out such a projection the standard technique of two dimensional imaging can be
used. R.H. Frater ([Frater]) was the first to discuss this idea. In particular, he considered the concept
of W-layers and different presentations of the convolving function. Recently this algorithm was coded in
CASA and got the name W-projection. The W-projection program has been successfully tested several
times. In this memo I analyze the possible problem of the W-projection at the case of poor UV coverage.
For this purpose I have evaluated the convolution function analytically. I have found that requirement to
the width of the convolution function can be more severe (than at [paper]) for the 327 MHz and especially
75 MHz cases.



2 The projection of the measured visibilities at W # 0 to the
desired visibilities at W = 0.

The visibility for W = 0 (Visw=(U)) for one dimensional case can be written as the following integral.

Visw—o(U) = /p(l) exp(jnW1?) exp(—jnWi?) exp(j2rUl) dl (1)
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where [is the coordinate at the source picture plane;
U is the U components of the baseline vector;
B(!) is the source brightness distribution.

The equation (1) is the Fourier transform of the production of the two functions f; and fo, that is equal
to convolution of the Fourier transform of f; and f,. The Fourier transform of f; is Visw o
Therefore the equation (1) can be rewritten as:

ViSWzo(U) = VZ'SW#O oGy = /ViSW;ﬁO(Ul) * Gw(U — U1) dU, (2)

where the sign ¢ stands for convolution;
Gw (U) is the Fourier transform of the function fs;

The relation 2 is the mathematical basis for recalculation (projection) of the measured visibilities Visw o
to the desired visibilities Visy—o
But the relation 2 is correct only if Visy.o(U1) is known everywhere in (—o0,+00). In reality
only few points of Visywo(U1) can be available at the given W-layer especially at the large W-layers.
Still lets try to estimate the effect of the poor UV coverage at the W-layer on the quality of
recalculation (projection) of the measured visibilities Visy o into the desirable visibilities with W = 0
- Visw=op. Write down the Fourier transform of the equation 2 (dirty map DM), taking into account
that the Fourier transform of the convolution of two functions is equal to product of the relevant Fourier
transforms, and that the set of measured visibilities can be represent as a product of the indefinite set of
the measurement and the SHA function (set of delta functions at the locations of the measured visibilities
at the UV plane).

DMw(ll) = f(VlSW:[)) = [f(SHAw) Of(VlSW;éO)] * .7:Gw
[DBuw (1) o (B(1) * exp(—jaWi?))] * exp(ja W)

{/ DBy (Iy — 1) * B(l) * exp(—jmWI?) dl| * exp(jmWI3)

/ B(l) * DBw (s — 1) * exp(aWV (12 — 12) di (3)

The equation 3 confirms that effect of the W term is canceled completely only at the case of the
full UV coverage (The dirty beam DM is indefinitely narrow). If the main lobe of the dirty beam DBy,
is narrow, then [ — [? ~ 2(l; — ) * | and therefore the residual phase corruption when the algorithm
W-projection is applied is described by the following equation:

W A A w A
AQyeswp =2 27Wy - IAl ~ 27— - =+ ————— ~ 27— - —————— 4
Pyesuwr A N d Upaa(W) A Upar(W) )
where d is the diameter of the array antenna,
Wy is W in X at the W- layer;
Unaz (W) is maximum of U component of the baselines at the W layer;



For comparison, the phase corruption without any correction of the W term is determined by the following

equation:
Apnoup =707 2 (5)
Dividing equation 5 by equation 4, we get equation for the gain of the W-projection algorithm in the
suppression of the phase corruption:
A<;0now;o ~ Umaac(W)
AQyeswp 2d

(6)

Looking at this equation everyone can be impressed by the suppression of the phase corruption provided
by W-projection algorithm. But there are two concerns:

1. The value of the residual phase corruption when the algorithm W-projection is applied (equation 4)
must be small. This is not true at all cases. For example, if W ~ Upyqeq, then Apyeswp =~ 1rad (for
d=25m, A\ = 4m), what is not so small.

2.The effect of big side lobes at the Dirty beam for some W layers with bad UV coverage can prevent
using concept, of narrow width of the Dirty beam.

3 W-term correction at the image plane

We can arrive exactly to the same result (equation 3), if carry out the Fourier transform (using FFT)
of the observed visibilities at the given W-layer (we’ll get [DByw (1) ¢ (B(l) * exp(—jnW1?))] ) and then
correct W term effect at the image plane multiplying the result by the exp(jmW1i?).
Compare the computational time of the two algorithms:
W-projection requires
Nyy - Ny calculations for each W=layer;
The correction at the image plane requires
Nym - 1g Ny, calculations for each W=layer;
where: Ny, Ny are the number of pixels at UV and Im planes;
Nye is number of pixels at the width of the convolution function;
Consider Ny, = Njjp = N
The following inequality N, > 1g(N) is practically correct always!!
This proves that the correction of the W-term at the image plane may have an advantage
at the computation time in comparison with W-projection algorithm

4 Analytical evaluation of the convolution function

Following the conclusion of the section 1, we can say that the measured visibilities corrupted by the
complex exponent with the W term, can be recalculated (projected) to the desired visibilities (without
effect of the W term), convolving the measured visibilities with the convolving function Gw (U) which
is the Fourier transform of the function f>(l) = exp(j7WI?). So the convolving function Gw (U) is
determined by the following integral:

L
Gw(U) = / exp(jnW1?) exp(j2nUl) di (7)

—-L

where W is value of the visibility’s W at the W layer, in wavelength;
U is the U components of the baseline vector, in wavelength;
2L is the full field of view, in radians.



This integral can be easily converted to the following integral:

U\ [t U\’
Gw(U) =exp <—j7rW> [L exp | j7W (l + W) dl (8)
Now, having changed the variable of the integral —z = (I + <) v2W, we can come to the following
integral:
U? 1 r2 T
Gw(U) = exp | —jr= | ——— Te) d 9
W( ) eXp( .]ﬂ-W)\/W/zl eXp(']Qm) L ()
where

T
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w
U
zy = <+L + W) V2w (10)
Finally the amplitude and the phase of the convolving function Gy (U) can be derived as:
|Gw (U)] = L\/[0(352) — C(@)]” + [S(x) = S(a1))” (11)
V2W
. U? S(x2) — S(x1)

where C(z) = [ cos Zt* dt;
S(x) = [, sin 5t* dt;
are Frenel’s integrals ([Janke])

The Frenel’s integrals have the following property ([Janke]):
1. Both of them are odd functions;
2. Both of them are equal zero for zero argument;
3. Both of them are going to 0.5 when the argument goes to infinity.
Based on these properties, and considering Lv2W > 1 (what is right when the W problem exists) we
arrive to the conclusion that |Gy (0)| = \/21W\/§ and therefore the amplitude of the normalized convolving
function is equal:

| = Z5Victen —Cal + (5 - (e (13)
Both z; and z are positive and very large for large U because of the factor v2W (equation 10) which
is big when the W problem exists. So C(z3) ~ 0.5,C(z1) ~ 0.5, S(z2) ~ 0.5, S(z1) ~ 0.5 and therefore
the normalized convolution function (equation 13) is zero for large U.
For the small U 1 is large negative, but x5 is large positive (equation 10) and therefore the normalized
convolution function (equation 13) is near 1 for small U
If U =W % L then 1 = 0 and x2 > 1 (equation 10) and C(z1) = S(xz1) = 0 and C(x2) = S(z2) = 0.5.
Therefore, if U = W x L then the normalized convolution function (equation 13) is equal 0.5!! Taking into
account that the pixel size at U should be equal the reciprocal of double size of the image (ﬁ) we arrive
to the very simple equation for the full width (at the level 0.5) of the convolution function at pixels, if
no oversampling:

2Upiz0s = 8% L2 x W (14)

where L is half of the field of view, in radians;
W is in wavelength;
2Upiz0.5 the full width of the convolution function
at the level 0.5, in pixels (without oversampling).
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Figure 1: Amplitude and phase of the convolution function. VLA-C, A = 4m, W = 800\

If the field of view is fixed, then the width of the convolution function varies directly with frequency.
But if the field of view is determined by the primary beam width, then the width of the convolution
function varies inversely with frequency.

The results of calculation of the full width of the convolution function using the equation 14 are given at
the table 1 for the four VLA configurations, wavelength 4m, and W=W,,,,,. The full size of the image
is taken as the full size of the VLA 25m dish beam pattern (level 0.5) at 4band. This size (2L= 700’=
0.204rad) is picked up from the memo: “Low frequency observation and data reduction with VLA” at
http:/lwa.nrl.navy.mil/tutorial.

Table 1: The full width of the convolution function at the level 0.5 for the four VLA configurations at
A =4m;

VLA, config D C B A
Winaa /A 250 | 750 | 2500 | 7500
2Upiz0.5, Pixels | 21 | 62 | 210 | 625

The paper [paper] says: “The support of the w-dependent gridding function grows with both W
and the field of view (equation 14 confirms and specifies this relation), typically up to a largest value
of about 70 by 70...” Looking at the table 1, we can say that the paper statement (70 by 70..) is
right for the A = 4m only for up to VLA-C configuration and the configurations B and A require much
more size. This size will be required 10 times bigger for A configuration (100! times bigger at the 2
dimensional case). If the oversampling is desirable then instead of 512 by 512 (as it is in [paper]) it can
be 5000 by 5000!!

As an example I have calculated the amplitude (equation 13) and phase (equation 12) of the normalized



convolving function for VLA-C configuration and wavelength 4m. The result is plotted at the Fig 1.
The phase is badly determined (%) when the amplitude drops to < 0.5. So the phase plot stops after
U=35.

5 Conclusion

1. The convolution function (both amplitude and phase) is evaluated analytically. The expression for
width of the convolution function is found as a very simple equation.

2. Based on the found expression for the width of the convolution function, we found that the require-
ment for the support of the W-dependent gridding function can be more severe than it is written at the
[paper] (70x70 pixels). For example this full width can need be ~ 600x600 pixels at the wavelength 4m
for VLA-A configuration. If oversampling is required, then it can be grow up to 5000x5000.

3. So the W-projection algorithm may meet a problem at the longer VLA configurations (VLA-A, VLA-
B)

4. The projection of the given visibility (/W # 0) to the desired visibility (W = 0) may give a wrong
result at the W layers with bad UV coverage.

5. So the W-projection algorithm will not work for a snapshot observation when the UV coverage is
especially bad.

6. The computing time ( in the [paper]) is compared with the so called facet in UV plane algorithm.
This algorithm is not known to anyone!

The AIPS task IMAGR (especially facets at the tangent plane (AIPS memo 113)) can give better com-
puting time than W-projection?

7.Correction of the W-term can be carried out at the image plane: the Fourier transform of the observed
visibilities at the given W-layer with following multiplication by the exp(j7W (12 +m?)). This leads to the
same equation (3) for the dirty map as W-projection algorithm gives. The correction at the image
plane may have the advantage of the W-projection algorithm in the computing time?
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