Comparison of E and D configuration sensitivity when D configuration is tapered.

L. Kogan, F. Owen

July 6, 2012

1 Introduction

The latest design of the new most compact E-configuration of VLA has been finished. The array is located inside of the ellipse (250mx300m). So the array dimensions are approximately 3 times less than the existed most compact VLA configuration: D. Therefore the sensitivity of E-configuration to the brightness temperature of an expanded source might be expected to be 9 times better in comparison with D configuration. However using tapering with the D-configuration data can diminish this advantage. In this memo we estimate the actual possible advantage of E configuration when tapering is used with the D configuration data.

2 The estimation of the sensitivity when the tapering is applied.

The sensitivity (Signal to Noise Ratio-SNR) of an array to the brightness temperature of an expanded source is determined by the ratio of the beam width (in area) BW and noise NOISE.

Tapering of D configuration leads to the increasing of its beam width diminishing the advantage of E-configuration. But the tapering also leads to an increase in the noise. In this memo we look at both the effects of the D configuration tapering (beam width increasing and noise increasing) to estimate the final advantage of E-configuration. We consider the noises and efficiencies are identical for all antennas. So effect of the tapering is determined exclusively by the distribution of the array's baselines.

$$\frac{SNR_E}{SNR_D} = \frac{BW_E}{BW_D} \cdot \frac{NOISE_D}{NOISE_E} \tag{1}$$

The noise is inversely proportional to the square root of equivalent number of baselines: $\sqrt{N_{bl}}$. If both D and E configurations are not tapered, then $NOISE_D = NOISE_E$ (because number of baselines is the same) and sensitivity of E-configuration is ~ 9 times better than sensitivity of D configuration (because $\frac{SNR_E}{SNR_D} = \frac{BW_E}{BW_D} = \frac{D_{sizeD}^2}{D_{sizeE}^2}$)

Consider the special case when the tapering of D-configuration makes its beam width the same as for the untapered E configuration. The tapering of D-configuration will increase the noise of Dconfiguration because the equivalent number of baselines will be decreased. The signal to noise ratio at this case will be equal:

$$\frac{SNR_E}{SNR_D} = \frac{NOISE_D tap}{NOISE_E} = \frac{\sqrt{NBE}}{\sqrt{NBD_{tap}}}$$
(2)

where NBE is number of the baselines at the untapered E-configuration

 NBD_{tap} is equivalent number of the baselines at the taped D-configuration

As we discovered, D-configuration has the remarkable feature:

Number of baselines inside of the circle of radius R is proportional to this radius (not to the radius' square) with high accuracy!.

Therefore, the ratio $\frac{\sqrt{NBE}}{\sqrt{NBD_{tap}}} = \frac{\sqrt{NBD_{notap}}}{\sqrt{NBD_{tap}}}$ can be substituted by the SQRT of ratio of the equivalent sizes of untapered and tapered D-configuration, which is equaled to ratio of the linear sizes of the relevant beams ($\sqrt{3}$ in our case).

3 Simulation of observations on E and D configuration.

The AIPS task UVCON was used to simulate observations on E- and D-configuration. Then the AIPS task IMAGR was used to estimate both the beam widths and the noise increase caused by tapering. The result is given at the table 1.

$UV taper, K\lambda$	Beam, asec x asec	NoiseFact	SNR=BEAM/NoiseFact
D-Configuration			
NoTap	26.3x24.6	1.000	647
6x6	35.6 x 3 4.5	1.102	1114
4x4	45.0x44.3	1.263	1578
3x3	55.7x55.4	1.438	2146
2x2	77.5x77.1	1.763	3389
1x1	131.9x131.1	2.599	6653
0.5 x 0.5	210.3x199.4	4.294	9766
0.25 x 0.25	298x231	6.145	11207
E-Configuration			
NoTap	78.9x69.7	1.000	5499
4x4	82.3x73.9	1.007	6040
2x2	92.9x86.6	1.082	7435
1x1	132.1x128.3	1.484	11421
0.5 x 0.5	209.3x205.9	2.476	17405
0.25 x 0.25	313.7x246.9	4.145	18686

Table 1: The result of simulations of E and D configurations with tapering. Snapshot; $\lambda = 10cm$

The table confirms the result of the previous section that tapering of D configuration to get the E-configuration (without tapering) beam makes worse the noise in $\sqrt{3}$ times (see the tapering 2x2 in the top half of the table leads to the NoiseFact=1.763).

4 Conclusions

If there is no tapering for both E and D configurations, then E configuration has advantage in surface brightness sensitivity approximately 9 times. But tapering applied to D configuration diminishes this advantage (for snapshot observation) to $\sim \sqrt{3}$ times!