
EVLA Memo 161

The Effects of Automated RFI Mitigation on Source
Intensity

Joe Helmboldt
Naval Research Laboratory

May 8 2012

1 Introduction

In this informal write-up, I would like to describe in some detail the work I’ve been doing on
automated flagging and subtraction of RFI. I will outline each algorithm and have included some
figures to illustrate some of the issues being discussed. I will start with my simple flagging routine
and then move on to the subtraction routines which use Ramana Athreya’s RFIfix algorithm as a
starting point.

2 Flagging

The flagging algorithm I am currently using is a basic sigma-clipping routine that runs on visibilities
binned by uv-radius. I have plans to alter it so that the data is also binned by azimuthal angle
within each uv-radius bin, but for now, this routine seems to work well. I have it running in IDL
and python. Here are the details:

1. The data are binned by uv-radius. These are not equally spaced bins, but are set up so that
each bin has roughly the same number of data per bin. The default is to set up the bins so
that for each channel and polarization, each bin has 1000 visibilities per bin. There is a free
parameter that allows the user to change this, but the algorithm does not allow it to go below
10.

2. For each radial bin, the average amplitude is computed for each channel. For 10 or more
channels, the half with the weakest amplitudes (i.e., all those below the median among all
channels) are used for the sigma-clipping portion. If there are less than 10 channels, only the
weakest channel is used; there is an option to do this even with more than 10 channels if the
user wishes.

3. Once the channels to be used are identified, the real and imaginary parts of the visibilities are
concatenated and the standard sigma-clipping is applied. The default is to do 10 iterations,
each time clipping data beyond the mean plus or minus 2.576 times the standard deviation
(i.e., the 99th percentile, assuming a Gaussian distribution). I stress that this is done on
the visibilities and not the amplitudes, which is how I get away with assuming Gaussian
distributions. The number of iterations and the number of “sigmas” used can be changed by
the user. The final limits determined by the last iteration of the clipping portion are then
applied to all the data in the radial bin (i.e., all channels) to flag.

To illustrate the performance of this algorithm, and for the remainder of this document, I will
use the VLSS field 1330-253 (for my own selfish reasons; the field contains M83, for which I would

1



Figure 1: For the shortest baseline for the VLSS 1330-253 field residual data, images of the Stokes
I amplitude with frequency on the y-axis and time index on the x-axis before (upper) and after
(lower) automated flagging. The display stretch goes from 0 to 700 Jy.

like a low frequency image). I ran the flagging algorithm on this field, then ran IonImage on it within
Obit. I then un-flagged the residual data produced by IonImage and will use that residual data
for testing the rest of the algorithms described here. I re-ran the flagging routine on the residual
data to help illustrate its effectiveness. In Fig. 1, I have displayed the Stokes I amplitudes before
and after flagging for the shortest baseline for clipping at the 3-sigma level. As you can see, the
algorithm flags most of the RFI you can see by eye, but some lower level RFI is probably missed.

3 RFI Model Subtraction

3.1 RFIfix

The first RFI subtraction routine I implemented was (essentially) Ramana’s RFIfix. I based my im-
plementation on our conversations in Charlottesville. While it may differ somewhat from Ramana’s
algorithm, it is based on the same assumptions that (1) the RFI will oscillate at the fringe rate of
the field center and that (2) over a relatively short period of time, the combined source visibilities
can be approximated by a constant. For sources that are relatively far from the center of the field
of view (FOV), there are some problems with this, but I will expand on this later. So, the model
fit to the data is

V = A+Be−2iπw (1)

The complex constant A approximates the source visibility and the complex constant B gives the
amplitude and phase term for the RFI. Since there can be more that one source of RFI, even if the

2



phase terms of these sources are stable with time, the phase for the combined RFI signal can vary
with time as can either the amplitude of the combined signal or the amplitudes of the individual
RFI sources. Therefore, the data should be fit over a relatively short time interval so that the time
dependence of B can be accounted for. My implementation of the algorithm is as follows:

1. For one baseline, channel, and polarization, I fit the model in equation (1) (which is a linear
fit) to the visibilities as a function of w separately for each time step over the span of one
RFI period, each time centering the model on that time step. If there are fewer than 3 time
steps across one period, the fit is not done because the RFI is undersampled. If the total time
covered by the data does not span more than 1/3 of a period, the fit is not done because the
model will be too poorly constrained (I am fairly certain Ramana applies this same criterion).
Think of Ramana’s diagrams of the data as a circle in the real and imaginary plane centered
at the real and imaginary components of the source visibility with a radius equal to the
amplitude of the RFI. The center and size of the circle can’t be constrained well enough if
only a small portion of the circle is measured.

2. Once all the model fits are done, I go back to each time step and compare the χ2 difference
between it and the model to that of other time steps. For any of the other time steps which
have a lower χ2, its model fit is used to compute the model value at the current time step. If
this produces a better match to the data, this fit is used instead. The purpose of this is to
obtain better fits for time steps that are near the edges of bursts of RFI. For these time steps,
the original fit will contain some time steps that are beyond the extent of the RFI burst. I
believe this is also similar to something Ramana does for the same purpose.

3. After this is finished, for all time steps where subtracting the RFI portion of the model
[i.e., Bexp(−2iπw)] lowers the rms/amplitude, the RFI model is subtracted. This criterion
prevents the subtraction from making things worse either by increasing the noise or artificially
increasing the mean (i.e., A may be way off from the true value). There may be problems
with this criterion; I have written more on this below.

Fig. 2 shows a result from a test I ran on the residual data for 1330-253. I ran my implementation
of RFIfix on the data, then ran my flagging routine to flag any remaining RFI and Fig. 2 shows
the amplitudes for the shortest baseline for the RFIfix-subtracted data before and after flagging.
Comparing this to Fig. 1, you can see that even for this RFI-plagued baseline, RFIfix gets rid of
most of the RFI, and the flagging gets rid of the rest.

I have found two main problems with this approach. The first we have discussed in Char-
lottesville before. For a source that is not at the center of the FOV, the source will have a non-zero
fringe rate that can be similar to the RFI fringe rate for a period of time. To illustrate this, I used
UVSUB within AIPS to construct a model data set using the u, v, w coordinates of the 1330-253
field for a point source offset from the FOV center and ran RFIfix on it. In the upper left panel of
Fig. 3, I have plotted the ratio of the visibility amplitudes after RFIfix to those before it was run
as a function of the ratio of the simulated source’s fringe rate to that of the RFI (see the Appendix
for a description of how the source fringe rate is computed). You can see in this plot a systematic
trend toward a source amplitude of zero starting at a source fringe rate of zero (and also at twice
the RFI fringe rate), reaching zero amplitude when the source fringe rate equals that of the RFI.
The data points also seem to cluster around a fringe rate ratio of -1, but this has more to do with
uv-coverage. This can be seen in the upper right panel of Fig. 3 where I have plotted the fraction of

3



data whose amplitudes where changed by RFIfix within bins of fringe rate ratio. There is a definite
peak at a fringe rate ratio of 1, but not one at -1. There is also a noticeable dip near zero because
this is where the RFI fringe rate is relatively large (so the ratio is small) and RFIfix does nothing
because there are two or fewer time steps across one RFI period (i.e., it is sampled at or below the
Nyquist rate). You can also see that the source is more frequently affected when the baseline u is
small by looking at the difference between the dirty image of the simulated source after RFIfix and
the dirty image before RFIfix in the right panels of Fig. 4. The main result is a dark horizontal line
in the difference between the two images (a narrow range in u translating to a wide range in l in
the image plane).

The solution to this appears to be to use residual data, as Bill suggested. I have illustrated this
by adding noise to the simulated data to “bury” it in the noise within the visibility data for each
channel, but not so much that it cannot be detected within the image plane. After doing this, I
reran RFIfix and have plotted in the lower panels of Fig. 3 the same things as in the upper panels
of Fig. 3, this time for the simulated data plus noise. Clearly the prominent dip at a fringe rate
ratio of unity has been eliminated.

The plots in Fig. 3 also illustrate the second problem. The simulated data has no RFI, so ideally
RFIfix should do nothing to it, with or without noise. Subtracting an RFI model where there is
no RFI is analogous to cleaning the noise during the image deconvolution process. Subtracting a
model where there no source, if done often enough, can create a bias. Fig. 3 shows that this does
happen quite often with RFIfix. This can be seen by examining the images in the right column of
Fig. 4, dirty images made using the source-plus-noise simulated data before and after RFIfix. The
difference between these two images shows a negative residual at the center. From Fig. 3, we can see
that this is not the result of the algorithm mistaking the source for RFI, but from the general bias
created by subtracting the RFI model where there is no RFI, producing a bias. I initially thought
that this bias might be caused by my criterion that the subtraction of the RFI model only reduce
the amplitude of the data. However, I tested versions of the code where I allowed the subtraction of
the RFI model to increase the data amplitude by as much as a factor of two, and then by a larger
factor. But, in both cases, I still got results similar to those seen in the right panels of Fig. 4. I
therefore concluded that the problem really lies with allowing RFIfix to “run amok”, so to speak,
letting it subtract RFI where there is no RFI to subtract.

3.2 Modified RFIfix

To address the biassing problem, I have developed a modified version of RFIfix that attempts to only
subtract RFI where it is actually present in the data. I also made a couple of other modifications
to how RFIfix works. Here are the specifics:

1. For each polarization, baseline and channel, I break the data up into scans. For a single scan,
I compute the discrete Fourier transform (DFT) of the visibilities as a function of w. In this
DFT, RFI will show up as a large peak at a frequency of −1. I use the average w spacing
for the scan to compute the expected spacing between the clones of this peak, ∆f , that will
appear as a comb-like function in frequency space that results from the DFT of the signal
being convolved with the Fourier transform of the sampling function. I then compute the DFT
for frequencies from −1−∆f/4 to −1 + ∆f/4 to make sure I do not run into the wings of the
nearest clones of the potential RFI peak at f = −1. I then use the cumulative distribution of
the amplitudes of the DFT for the first and last quarters of this frequency range to compute

4



Figure 2: For the shortest baseline for the VLSS 1330-253 field residual data after RFIfix was
applied, images of the Stokes I amplitude with frequency on the y-axis and time index on the x-axis
before (upper) and after (lower) automated flagging. The display stretch goes from 0 to 700 Jy.

the 99th percentile for amplitudes that I assume are completely the result of noise (+ residual
source flux). I also compute the 90th percentile to be used at a later step. I then locate
the maximum amplitude near f = −1 (allowing for the fact that noise can change the actual
location of the RFI peak from the expected location) and compare it to the 99th percentile
threshold. If it is above this threshold, I proceed to the next step. If not, I do nothing to this
scan and move on to the next one. Note that this may miss relatively strong but short bursts
of RFI. However, these can be flagged relatively easily later and will not cause you to loose
that much data. If you really want to subtract such bursts out, the time interval used can be
changed from one scan to some arbitrary value of your choosing.

2. If RFI was detected using the above scheme, RFIfix is run on the scan with some modifications.
First, given the previous results, I assume that this is being run on residual data in order to
protect bright sources which still may be “detected” as RFI by my detection scheme and that
any residual source flux is negligible when looking at single-channel visibilities. This allows
me to adjust the model and only fit Bexp(−2iπw), i.e., the mean visibility is assumed to be
zero. This also allows me to throw out the requirements that (1) the RFI be Nyquist sampled
or better and (2) at least 1/3 of a period needs to be used for the fit. For a single plane wave of
a known frequency with no added constant(s), you need not sample it at intervals < 1/(2f) to
fit for its complex amplitude. For example, if you know its frequency, sampling the plane wave
at intervals of 0.3/f , 0.6/f , and 0.9/f is identical to sampling at intervals of 0.3/f , 1.6/f , and
2.9/f . The Nyquist theorem really only applies to a signal with a distribution of frequencies,
not one single frequency. The requirement of fitting over at least 1/3 of a period can also be

5



Figure 3: Upper left: for a single, off-center point source, the ratio of the visibility amplitude after
RFIfix to the actual amplitude as a function of the ratio of the source’s fringe rate to the RFI fringe
rate. Upper right: the fraction of visibilities where RFIfix lowered the amplitude within bins of the
ratio of the source’s fringe rate to the RFI fringe rate. Lower panels: the same as the upper panels,
but with Gaussian noise added to the simulated visibility data.

6



Figure 4: For the point source data presented in Fig. 3 (with noise on the right, without on the
left), the dirty images before and after RFIfix and the difference between the two.

7



eliminated because the mean is set at zero. Think again of Ramana’s representation of the
RFI in the complex plane as a circle centered at the coordinates of the mean source visibility.
If the mean is set at zero, the center of the circle is also set at the origin, and you do not need
1/3 of the circle to determine its radius. For this version of RFIfix, I do the fit for each time
step using its visibility and those of the three closest time steps so that four time steps are
used for each fit would should be enough to constrain well the two free parameters, the real
and imaginary parts of the constant B. Following this, I perform step 2 of the description of
RFIfix given above just as I did before to improve the fits near the boundaries of any bursts
of RFI.

3. The next step is to determine where the RFI actually is within the scan. To do this, I first
median smooth the visibility amplitudes so that I can identify the largest amplitudes with
little influence from noise. Starting with the time step with the largest median-smoothed
amplitude, I subtract the RFI model determined in step 2. I then compute the amplitude
of the DFT computed at a single frequency, f = −1 and compare it to the 90th percentile
threshold determined in step 1. If this amplitude is now below the 90th percentile threshold,
I stop here. Otherwise, I proceed to the time step with the next largest median-smoothed
amplitude, subtract its RFI model, compute the power at f = −1, and compare it to the 90th
percentile threshold. I keep doing this until the power at f = −1 is below this threshold or
until I run out of time steps; after this, the RFI model for any of the remaining time steps is
set to zero.

4. The final step is to do a little smoothing of the RFI model. Since the fits are done over
relatively short periods of time, the fitted values for B may be fairly noisy, and I would like
to avoid artificially reducing the noise in the data. To do this, I basically median smooth the
real and imaginary parts of B as a function of time for all time steps where the RFI model
was not set to zero. I then multiply the smoothed values for B times exp(−2iπw). After
this, I subtract this final RFI model from the original visibility data for the current scan and
proceed to the next one.

In Fig. 5, I have displayed the amplitudes for the modified RFIfix-subtracted data for the shortest
baseline for 1330-253 before and after flagging. If you compare this to Fig. 3, you can see that while
it gets rid of a lot of visible RFI, it does an incomplete job with some of the stronger parts of the
comb during the third and final scan. However, when I ran this on the simulated data that includes
noise, it did nothing to the visibilities, as should be the case. To test this further, I added a 100 Jy
point source to the residual data for 1330-253 at the same location as the simulated point source
and ran the modified RFIfix. The resulting dirty images before and after are shown in the left
panels of Fig. 6. From these you can see that with this bright source, we still have the problem of
losing flux that we had before. However, I also redid this test using an added 1 Jy source in the
same location. The resulting images are shown in the right panels of Fig. 6. From the difference
between the images after modified RFIfix and before, there appears to be no evidence of source flux
subtraction due to bias. This difference image also shows the telltale bands produced by RFI within
images, implying that this version of RFIfix did a fairly decent job of removing RFI, but it may not
have removed a lot of low-level RFI. In principle, the 99th and 90th percentile thresholds in steps 1
and 3 are fairly arbitrary and are based on some tests I did on a few baselines and channels. These
could be adjusted to go deeper after weaker RFI, but you have to be careful not to go so deep as
to produce a bias by subtracting RFI models from noise.

8



Figure 5: For the shortest baseline for the VLSS 1330-253 field residual data after my modified
RFIfix was applied, images of the Stokes I amplitude with frequency on the y-axis and time index
on the x-axis before (upper) and after (lower) automated flagging. The display stretch goes from 0
to 700 Jy.

9



Figure 6: For a 100 Jy source (left) and a 1 Jy source (right) added to residual data for the VLSS
field 1330-253 made using IonImage, the dirty images before and after my modified version of RFIfix
and the difference between the two.

10



3.3 RFIsmooth: A Slightly Different Approach

After working on the modified version of RFIfix, I had an idea for a similar but different approach.
For now, I am calling it RFIsmooth, which is not a great name, but is useful for now for comparisons
with RFIfix. I am open to any suggestions for a new name. It is based on the same principal that
the RFI can be modeled by a plane wave of the form Bexp(−2iπw) and that we are using residual
data where the source flux is negligible. The algorithm then proceeds as follows:

1. For one polarization, baseline, channel, and scan, instead of fitting the RFI model to the data,
I first multiply the data by exp(2iπw). I then median smooth this “un-fringe-stopped” data
with a filter of a given width in time (I have used a 2 minute wide filter for the VLSS data). In
principle, the width of the filter should be roughly the width of time over which the complex
amplitude of the RFI, B, is stable. In practice, it should be the smallest width that still gets
rid of visible noise fluctuations. I am also assuming that over this chosen time window, the
noise multiplied by exp(2iπw) averages out to zero. Mathematically speaking, I am not sure
that this is completely valid, but in practice it seems to work. After median smoothing, I do
a regular boxcar smooth to smooth out the rough edges a bit, and what we are left with is
essentially mean values for B as a function of time.

2. Ideally, the next step would be to simple multiply these smoothed values forB times exp(−2iπw)
and subtract this from the unaltered data. However, I found that doing this produces a bias,
so I developed a thresholding scheme. First, I recognized that the smoothing that I am doing
is quite similar to computing the Fourier transform at a single frequency (f = −1) over a
short time period (here, 2 minutes). I therefore compute the DFT for the entire scan at fre-
quencies within the same noise windows as I used in step 1 of the modified RFIfix described
above. I then used the cumulative distribution of the amplitudes of this DFT to compute the
68th percentile of the noise amplitudes. I then multiplied this value by a scaling factor to
correct for the fact that the boxcar smoothing and the DFT are slightly different operations
(essentially differing by a factor of δw, the mean w spacing) and for the fact that the DFT was
computed over the entire scan while the smoothing is done over a smaller time window (i.e.,
features will be sharper in the DFT over the entire scan than they will be over my two-minute
window). I then use this as my threshold value. Any time steps where the amplitudes of the
smoothed values for B are larger than this threshold have the RFI model subtracted from
them; the other time steps are left alone. The choice of using the 68th percentile is arbitrary
and based on some tests I did with a few baselines and channels. For 1330-253, this seemed
to get rid of RFI while not producing a bias. You can change this value to go deeper or less
deep depending on what the situation calls for.

This algorithm has the advantage of being a bit simpler than my modified version of RFIfix and
runs much faster. It also seems to perform better as you can see by comparing Fig. 7 to Fig. 5 where
you can see that much of the RFI missed in Fig. 5 is successfully subtracted out by RFIsmooth.
RFIsmooth seems to do roughly as good a job removing RFI and RFIfix without the bias problem.

To illustrate this further and to provide potential users with a tool for checking for the presence
of bias, I developed a relatively simple routine (in IDL) that adds a chosen number of point sources
at a given flux level to the visibility data, randomly positioned with a circular FOV of specified
width. The routine then flags the data and does a DFT for each source to compute the resulting
peak intensity of the source in the image plane. I have been using 100 sources over a 15 degree

11



Figure 7: For the shortest baseline for the VLSS 1330-253 field residual data after RFIsmooth was
applied, images of the Stokes I amplitude with frequency on the y-axis and time index on the x-axis
before (upper) and after (lower) automated flagging. The display stretch goes from 0 to 700 Jy.

FOV, so this series of DFTs actually takes much less time than making a dirty image of the entire
FOV within AIPS. The routine then un-flags the data, runs your choice of subtraction routine, does
some flagging, then recomputes the intensities. You can then compare the intensities before and
after subtraction. I show such a comparison using 100 randomly placed 1 Jy point sources in Fig.
8 where I have plotted the intensities of the simulated sources after subtraction versus those before
subtraction for RFIfix (upper left), my modified RFIfix (upper right), and RFIsmooth (lower left).
I have also plotted a comparison of the modified RFIfix to RFIsmooth in the lower right panel.
The bias from RFIfix is fairly obvious. There also seems to be a little bit of a bias for the modified
RFIfix, but it seems quite small and could be eliminated by using a higher threshold in step 3 in
§3.2. RFIsmooth produces no apparent bias. These plots also illustrate the way in which you can
choose your threshold level for something like RFIsmooth. Basically, you should use the lowest
threshold that does not produce a bias. My choice of using the 68th percentile threshold worked
for this VLSS field, but it may not be appropriate for all data sets.

4 Discussion

After all this, for the 1330-253 field, the subtraction routines did not really help out that much.
None of them really improved the source detection rate beyond what could be done with just
flagging. RFIfix did reduce the rms, but that is only because of the bias it produces which lowers
the intensity scale of the entire image; I actually detected fewer sources with SAD within AIPS
after running RFIfix. However, after looking at the results a little more, only 6% of the visibilities

12



Figure 8: For 100 randomly placed 1 Jy sources added to the residual data for 1330-253, the
measured peak intensities (no cleaning) for RFIfix plus automated flagging versus just automated
flagging (upper left), my modified RFIfix plus automated flagging versus just automated flagging
(upper right), RFIsmooth plus automated flagging versus just automated flagging (lower left), and
RFIsmooth plus automated flagging versus my modified RFIfix plus automated flagging.

13



were flagged when no subtraction was done, which is not a huge fraction. All of the subtraction
routines reduced the fraction of flagged visibilities down to about 3%. I think it is fairly impressive
that they are able to “rescue” about half of the flagged data. However, going from 6% flagged to
3% flagged does not do much to improve the image rms. And, any low-level RFI that was removed
did not make a whole lot of difference either. Therefore, I think these subtraction routines will be
much more valuable for data that has a lot more RFI and/or has a substantial amount of low-level
RFI. But, when done carefully, it does not hurt to run the subtraction.

I also discovered that the subtraction routines really help to rescue the shorter baselines as you
might have inferred from Fig. 1, 2, 5, and 7. In Fig. 9, for each polarization, I plotted the fraction
of visibilities flagged within bins of uv-radius when no RFI subtraction was done along with the
same for the data after each of the three subtraction routines was run. As expected, the fraction
of flagged data is much higher at the shortest spacings when no subtraction is done, reaching as
high as 15%. However, when any of the subtraction routines is applied first, this trend virtually
disappears and the fraction of flagged data stays roughly flat over all uv-radii. This implies that
the RFI subtraction routines are especially useful for the shortest spacings which should be of
great interest to anyone interested in extended emission from things like galaxy disks or cluster
halos/relics. This may also prevent you from having to virtually throw away all the the shortest
baselines when the RFI is fairly bad (which is maybe more relevant for GMRT). At the moment,
my favorite scheme is RFIsmooth since it appears to perform well and runs significantly faster than
either RFIfix routines. My plans for the near future are to (1) talk to Wendy and possibly Aaron
to see if there are any VLSS fields where the RFI was particularly terrible where RFIsmooth may
be a much bigger help, and (2) run some simulations to see how much sensitivity you can gain for
extended sources by running RFIsmooth on some RFI-plagued data where the shortest spacings
are virtually unusable. Any comments and suggestions on improvements or other tests you would
like to see would be greatly appreciated.

5 Appendix: Fringe Rates

For a point source at some position in the sky with direction cosines l, m, and n has a fringe-stopped
visibility at a given frequency, ν, of

Vν = Fνe
−2πi[lu+mv+(n−1)w] (2)

where Fν is the source’s total flux density and u, v, and w are the baseline coordinates defined as

u = sin(h)X+ cos(h)Y (3)

v = −sin(δ)cos(h)X+ sin(δ)sin(h)Y+ cos(δ)Z (4)

w = cos(δ)cos(h)X− cos(δ)sin(h)Y+ sin(δ)Z (5)

where X, Y , and Z represent the antennas’ physical positions (in units of wavelengths) and h and δ
are the hour angle and declination of the field center, respectively. We can also express the visibility
of the source as a function of time as

Vν = Fνe
2πi(νf t+φ) (6)

where νf is the fringe rate of the source, and φ is a generic phase term. Equations (1) and (5) show
that we can relate the fringe rate to the baseline coordinates and the source position via the time

14



Figure 9: For RR (upper) and LL (lower) polarizations, the fraction of data flagged by automated
flagging with no RFI subtraction (white), after RFIfix (green), after my modified RFIfix (blue),
and after RFIsmooth (yellow).

15



derivatives of the baseline coordinates

νf = −[lu̇+mv̇ + (n− 1)ẇ] (7)

where the dot, as usual, denotes a time derivative. Using the fact that the time derivatives of X, Y ,
Z, and δ in equations (2), (3), and (4) are all zero and that the time derivative of the hour angle,
h, is the Earth’s rotation rate, ω⊕, we can solve for the following

u̇ = ω⊕[cos(δ)w − sin(δ)v] (8)

v̇ = ω⊕sin(δ)u (9)

ẇ = −ω⊕cos(δ)u (10)

Non-moving RFI has a fringe rate equal to the non-fringe stopped fringe rate of the field center
νRFI = ẇ = −ω⊕cos(δ)u. Therefore we can express the ratio of the source’s fringe rate to that of
the RFI as

νf
νRFI

=
[
w

u
− v

u
tan(δ)

]
l + tan(δ)m− (n− 1) (11)

which makes it useful to define a quantity, µ = [w − tan(δ)v]/u. Finally, if you establish a field-of
view with an angular radius of θ, you can see that the fringe rate will vary with azimuthal angle, ϕ,
around the circular boundary of the FOV by expanding the direction cosines l, m, and n in terms
of θ and ϕ according to

νf
νRFI

= sin(θ)cos(ϕ)µ+ sin(θ)sin(ϕ)tan(δ)− [cos(θ)− 1] (12)

We can then use this equation to determine the value of ϕ where the fringe rate reaches its ex-
trema = tan−1[tan(δ)/µ]. Plugging this value for ϕ into equation (11) then gives you the maxi-
mum(minimum) fringe rate for a given field of view for a particular baseline at a particular time
(i.e., at a given set of u, v, w coordinates).

16


