
EVLA Memo #133
Parallelization of the off-line data processing

operations using CASA

S. Bhatnagar, H. Ye and D. Schiebel

May 18, 2009

Abstract

This memo describes the work done towards parallelization of the most time
consuming steps involved in calibration and imaging of large databases (∼100 GB or
larger). The major data processing steps identified for parallelization were: simple
initial flagging of the raw data, primary time and frequency calibration followed by
image deconvolution (continuum and spectral line imaging) and SelfCal of multi-
channel database. The initial effort was focused on parallelization using the Single
Program Multiple Data (SPMD) paradigm where the data is distributed across a clus-
ter of computers with local disks and the same (or similar) program is run on each
node to process the piece of the data on the local disk.

A Python framework utilizing the CASA scripting interface for the paralleliza-
tion of the CASA tasks was developed. CASA tasks flagdata, gaincal, bandpass,
applycal and cleanwere parallelized using this framework. Using all the 16 nodes
of the CASA development cluster, 10−20× improvement in total run time compared
to the single-node run time for end-to-end continuum and spectral line imaging was
measured. Memory requirements for spectral line imaging are higher. The total
available RAM when using all the 16 nodes of the cluster (16 × 8 GB) was suffi-
cient to fit the run time memory buffers in the RAM, resulting in higher speed-up for
spectral line case. For the parameters of the cluster hardware, this argues in favour
of larger memory per CPU/node used for computing. It is therefore conceivable to
design an affordable cluster where the run-time memory buffers required for the aver-
age data volumes and image sizes for NRAO telescopes will fit entirely in the cluster
RAM.

1 Introduction

The major data processing steps identified for parallelization for processing large databases
(of size ∼ 100GB or larger) were: simple initial flagging of the raw data, primary time
and frequency calibration followed by image deconvolution (continuum and spectral line

1

Bhatnagar, Ye and Schiebel 2

imaging) and SelfCal of multi-channel database. Single-node run time analysis shows that
the off-line processing using CASA applications was ∼ 30× longer than the total time of
observation (EVLA Memo 132). The total effective I/O was ∼ 1 TB (for a ∼ 100 GB
database) and the post-processing time was limited by the disk I/O rate. Consequently
this initial effort was focused on parallelization using the Single Program Multiple Data
(SPMD) paradigm where the data is distributed across a cluster of computers with local
disks and the same (or similar) program is run on each node to process the piece of the
data on the local disk.

A Python framework utilizing the CASA scripting interface for the parallelization of
the CASA tasks was developed. CASA tasks flagdata, gaincal, bandpass, applycal
and clean were parallelized using this framework. Using all the 16 nodes of the CASA
development cluster, the wall-clock run-time was measured to be 15 min. for flagging,
∼ 20min. each for time and frequency (self-)calibration and 2 and 1.2 hours for spectral
line and continuum imaging respectively. The total run time for end-to-end continuum
and spectral line imaging was in the range ∼ 2.5 and ∼ 3.5 hr respectively, compared
to ∼ 22 and ∼ 74 hr when using a single node for post processing. This corresponds to
∼ 10 − 20× improvement in total run time for end-to-end continuum and spectral line
imaging compared to the single-node run time.

Section 2 describes the parameters of the database used for this work. The results
from the parallel execution of the various tasks on a 16-node cluster is given in Section 3.
Section 4 describes the software framework used for the parallelization of the various
CASA tasks used for data distribution and parallel post processing. Finally, Section 6 has
discussion for further work and investigations of issues identified in this work.

2 Data Description

The parameters of the simulated data used for these tests are given in Table 2 (see EVLA
Memo 132 for details). The simulated database corresponds to ∼ 86 GB worth of ob-
served data on two fields. One of the fields is a calibrater field (with a single point source
at the phase center) and the other is the target field. Both fields were cyclically observed
in all 32 spectral windows simultaneously, with a dwell time of 2 min and 30 min for the
calibrater and target field respectively. The total disk space required during processing,
including disk space for scratch columns, was ∼ 266GB1.

3 Wall-Clock time for parallel post-processing

The CASA Development cluster was used for timing parallelized CASA applications.
Each node of this 16-node cluster has 2 Quad-core Intel Xeon E5420 processors running
at 2.5 GHz, each with a cache size of 6144 KB (L2 cache of 1.2MB), 8 GB of RAM

1Work in CASA is currently in progress to eliminate the scratch columns where not necessary. However
note that scratch data on the disk is required during processing in all packages, including CASA.

Bhatnagar, Ye and Schiebel 3

Table 1: Parameters used for data simulation
λ 6cm the wavelength of observation
Nant 27 Number of antennas
Bmax 12.5 Km Max. baseline length
Nch 1024 Number of channels
Nspw 32 No. of Spectral Windows
Npol 4 Number of polarizations
T 2h Total length of observations
∆T 1s Integration time
NFields 2 No. of fields observed

per node and 1.8 Tera byte RAID-1 local disk. All the nodes are interconnected with a 1
Gigabit non-blocking Ethernet switch.

The entire data base was spread across 16-nodes of the cluster as described in Sec-
tion 4. A parallelized version of the CASA tasks were run on the cluster using the software
framework, described in Section 4. The run time for data flagging, continuum and spectral
line imaging and Self-Cal are given below. Summary of the run times is given in Table 2.
Image size in RA and Dec for both kind of imaging was 1K × 1K pixels. Spectral line
imaging cube had 1024 channels along the frequency axis of the image cube. The Cotton-
Schwab Clean algorithm using the ft algorithm for forward and reverse transforms was
used for image deconvolution.

Table 2: Summary of the wall-clock run time for parallelized tasks.
Operation 16-node run time 1-node run time
Flagging:quack only 15m 23m

Flagging: clipping 15m 66m

G-Jones solver (SelfCal) 20m 1h54m

B-Jones solver (SelfCal) 20m 1h53m

Data correction 15m 2h23m

Imaging: Spectral line 2h 64h

Imaging: Continuum 1.2h 12h

Total ∼ 2.5h − 3.5h ∼ 74h − 22h

3.1 Data Flagging

The CASA task flagdatawas used in two modes: (1) quackmode, and (2) manualflag
mode. Due to on-line software latencies, often the initial few integrations worth of data
in each scan is bad. The flagdata task in the quack mode flags data corresponding to
a user defined length of time starting from the beginning of each scan. The manualflag
mode of flagdata is used to flag data with amplitude outside a user defined range. This
typically removes strong RFI which is often sufficient - particularly at higher frequencies.

Bhatnagar, Ye and Schiebel 4

The flagdata in the quack mode and manualflag mode took ∼ 15 min each. The
quacking time2 was set to 1 min. The run time in the quack mode has weak dependence
on the quacking time. manualflag run time is independent of the amplitude range for
flagging.

3.2 Imaging: Spectral line imaging

Image deconvolution can be done entirely in the image domain (Högbom Clean) or by
iteratively reconciling the model image with the data (major-minor cycle based Clean,
e.g. CS-Clean). The former requires a single read and gridding of the data to compute the
images and the PSF, while the latter requires reading, gridding and data prediction in each
major-cycle. CS Clean is however almost always more accurate and is more commonly
used. We therefore used the CS-Clean algorithm for spectral line and continuum imaging.

Ignoring a few details, spectral line imaging is an embarrassingly parallel application
with no serial component for the image deconvolution iterations. Each node runs a full
spectral line deconvolution algorithm to convergences using the piece of data on its local
disk. The only serial part is in combining (if required) the image cubes from each node
to make a single image cube. The fraction of time for this last operation is however much
smaller than the total time required for image deconvolution using 16-nodes.

In the 16-node tests, each node has 2 spectral windows with 32 channels in each. A
64-channel spectral line cube imaging was done at each node and later combined to make
the final image cube. This entire operation took ∼ 2 hours of wall-clock run time.

Spectral line detection experiments also involves the operation of removing contin-
uum emission. A model corresponding to a continuum image is first subtracted from the
data. Any residual spectral-baseline is removed by either fitting and subtracting a spectral-
baseline fit from the spectrum in the image domain (using the IMLIN kind of algorithms)
or in the visibility domain (using UVLIN kind of algorithms). While continuum subtrac-
tion was ignored in these tests, its runtime cost is expected to be comparable to a single
major-cycle of the continuum imaging operation (in addition to the cost of computing the
continuum image).

3.3 Imaging: Continuum imaging

The computation for the χ2 is the same as for spectral line imaging and is an embar-
rassingly parallel operation. Computing the update direction for iterative deconvolution
involves computing residual images using the pieces of the data available at the local disk
at each node, and averaging the residual images from all the nodes. This involves com-
munication of residual images from each node to one node and was done using the the
1-Gigabit non-blocking cluster interconnect. A image plane deconvolution is done on the
final continuum residual image. This constitute the serial part of the continuum imaging

2Starting from the beginning of the scan, all data corresponding to quacking time is flagged in the
quack operation.

Bhatnagar, Ye and Schiebel 5

process.

The 16-node run time for continuum imaging with 5 major cycles was ∼ 1.2 hours.
The embarrassingly parallel operations were done using the CASA task clean while the
serial operations were implemented in the parallelization framework. For the image sizes
used in these tests, the fraction of time for data communication over the inter-connect
network and the serial operations were much smaller compared to the parallel operation.
This ratio will however be a function of the data and image sizes as well as the number of
nodes.

3.4 Calibration: Solving for G- and B-Jones

Self-Calibration is defined as solving for multiplicative antenna based gains as a function
of time and/or frequency using a model for the image derived from the image decon-
volution step. While the algorithm used for this and primary calibration is the same,
self-calibration test was done for the target field using the image model derived from the
imaging step as described above.

The 16-node run time to solve for G- and B-Jones terms was ∼ 20 minutes each. G-
Jones terms (gains as a function of time) were solved on a time scale of 2 minutes while
B-Jones (gains as a function of frequency) were solved on a time scale of 20 minutes.
Run time for primary calibration was insignificant compared to the total post-processing
time.

3.5 Calibration: Data correction

This step involves computation of the G- and B-Mueller matrices and correcting the mea-
sured data by multiplying it by these Mueller matrices. This involves one full read and
write of the data. The computational cost of these steps are relatively small.

The 16-node run time for this operation was ∼ 30 minutes.

4 A Python based parallelization framework

The fundamental interface to the post-processing algorithms implemented in the CASA
package is via the CASA toolkit (a Python binding for the underlying C++ code). A layer
of Python framework on top of the toolkit provides the tasking interface. While more
restrictive than the toolkit interface, traditional users use the tasking interface. Hence it
was decided to build the parallelization framework using the tasking rather than the toolkit
interface.

The tasking framework is implemented in the IPython script casapy.py which is
loaded in an IPython interpreter via the program casapy. Since CASA tasks cannot be
run as user process independent of the user interface, for remote execution it is required

Bhatnagar, Ye and Schiebel 6

that a copy of casapy be run on each cluster node, blocked on its input stream. A mech-
anism to send CASA tasking interface commands to these remote casapy processes and
to receive the output of these commands is also required. The IPython engine and
IPython Controller interfaces were used for this.

For parallel execution of the tasks, the following is assumed for the cluster configu-
ration:

• password-less ssh access to all nodes

• NFS access to the local disks at each node. This was required for initial loading
of the data3 and for the relatively small data communication (compared to the total
data volume) during processing (see section 6).

• same binary copy of the Python, IPython and the CASA packages is executable
from each node of the cluster

• while not necessary, it is helpful to have some systematic convention for node
names and local file system at each node (similar to the naming convention used
for the CASA Development Cluster).

The Measurement Set (MS) is split along the frequency axis at spectral window bound-
aries using the psplit() function in the parallelization framework4. Given the number
of nodes and base name of the directories on the local disks of each node, this uses the
CASA task split to equally distribute the available channels and/or spectral windows
across the nodes. The naming convention used for naming the individual pieces on the
MS is implemented in the mkname() function which takes the node ID, node name, base
directory, base file name and extension strings to construct the name of the local MS at
each node. The same naming convention is then used later for the parallel execution of
the tasks.

The IPython engine (ipengine) is a Python instance that takes Python commands
over a network connection. This can handle incoming and outgoing Python commands
(and even Python objects) over a network connection. Any number of instances of ipengine
can be started. The IPython Controller (ipcontroller) provides an interface to com-
municate with multiple instances of ipengine. It internally maintains the connection
with multiple ipengines and manages the book-keeping required for the incoming and
outgoing traffic per ipengine. It therefore provides a single-point blocking or non-
blocking interface to a network of ipengines using which commands can be sent to all or
selected ipengines, data received from ipengines, etc. The ipengine and ipcontroller
are user level independent processes which setup the communication between each other
by exchanging the required connection information via a designated disk file (the furl
file). The MultiEngineCleint Python class provides the Python scripting interfaces to
the ipcontroller process. The ipengines are started on the nodes using ssh and a

3For data-loading, a non-NFS based parallel data filler is possible.
4Data splitting at spectral window boundaries is convenient, particular for calibration. In principle, data

can be split at channel boundaries rather than spectral window boundaries.

Bhatnagar, Ye and Schiebel 7

Figure 1: Figure showing the hardware configuration of the cluster and the software framework
for running CASA applications on the cluster. The rectangular boxes represent computers running
the Linux OS. The numbers in the black boxes represent the sequence in which various processes
must be started: IPController on the user computer is started first, followed by the remote
IPEngines on all the nodes of the cluster. Standard casapy is then started on the user com-
puter and the MultiEngineClient (MEC) instantiated. MEC is then used to load the modified
casapy.py in the remote IPEngines.

single ipcontroller is started on the user computer5. The CASA Parallelization frame-
work is implemented in the cluster.py script (see Appendix B) which is loaded in
the casapy process started on the same computer on which ipcontroller is run. The
network of processes, the sequence in which they must be started and the relationship
between them is shown in Fig. 1.

The CASA interface to the cluster (after the ipengines and ipcontroller have
been started) is initialized by a call to the function pinit(). This returns a MultiEngineClient
(MEC) Python object which is connected to all the remote ipengines and forms the pri-
mary interface to the cluster nodes. The startcasapy() function uses the MEC object
to load a modified version of the casapy.py script6. If no exception is generated, all
the nodes are now ready and CASA tasking interface commands can be sent to the nodes
using the MEC object.

For the parallel execution of CASA tasks, first the value of the relevant task variables
is set in the remote casapy processes. There are two classes of task variables - ones which
have the same value at all nodes and the ones which potentially have different values

5This is currently done using a Linux shell script (see Appendix A). A more sophisticated Python
interface for starting the remote ipengines is available (which also uses ssh).

6Modified to execute in Python rather than in IPython.

Bhatnagar, Ye and Schiebel 8

at each node. The first class of variables are set by specifying the variables and their
values in a disk configuration file (this is typically the <task>.last file) and loading
this file in each of the remote ipengines. The convention followed for setting the value
of the second class of variables assumes that the values per node can be derived from a
combination of the node name, the node ID (as reported by the MEC object) and some
user defined values/strings. E.g., the name of the local input and output file names are
formed by concatenating a user defined root directory name (rootdir), node ID, user
defined work-directory (workdir), base name (basename) and extension (ext) strings.
A set of functions in cluster.py take the user configuration file and the variables as
input, to set up all the task variables at each node. These functions also have a list of
parameters which can be used to over-write the values of the task variables set via the
configuration file. The value of these parameters are set to default values such that they
have no effect unless explicitly set by the caller of these functions.

Once the remote variables for the task have been setup, they can be examined using
the command

MEC.execute("inp(’<taskname>’)")

(note that all the quotes are required)

Finally, the command

MEC.execute("go(’<taskname>’)")

can be used to start the execution of the remote tasks. This command will block till all
the remote tasks finish execution.

5 Run-time monitoring

The framework and the parallelization of the CASA applications described here will typi-
cally be run either in the batch mode or in a post-processing pipeline. User monitoring of
the run-time progress is therefore required. Typically, two levels of monitoring is done to
determine progress and performance of the software: (1) monitoring the hardware param-
eters and its utilization (memory utilization, CPU utilization, etc.), and (2) monitoring the
log messages from the software.

5.1 Node activity monitoring using Ganglia

For monitoring the cluster hardware parameters, the Ganglia7 system of software was
used. Ganglia is a widely used system and is scalable from small cluster of loosely cou-
pled computers to large grids of clusters/computers. It is well supported, well documented
and a mature software used at many super computing facilities.

7http://ganglia.info

Bhatnagar, Ye and Schiebel 9

A minimal system consisting of the gmond daemon and gstat program to query and
display the in-memory real-time XML database of hardware parameters can be used to
get a short-n-quick summary of the CPU usage of all the nodes as a function of time. See
Fig. 2 for a screenshot of the display of the output of the gstat program.

Figure 2: Figure showing a screenshot of the display of the output of the gstat program which
query the Ganglia gmond daemon. Each row contains the name of the node, number of CPUs, (ac-
tive processes/Total number of processes), [1-,5-, 15-minute] average CPU load, and the fraction
of the CPU time spent in User, Nice, System, Idle, I/O-wait states.

The full Ganglia system with a web-based interface is also installed for the CASA
Development Cluster. Its use for monitoring the hardware, even by the “standard” users
is highly recommended (see Fig. 3 for a screenshot).

5.2 Multiple casapy.log file monitoring using multitail

The framework described above for running parallel CASA tasks uses the SPMD paradigm
for cluster computing. An independent casapy process is started per CPU/core used for
parallel computing and I/O. Each of these processes write an independent log on the disk.
With a largish number of such processes used in the parallelization framework, monitor-
ing the application log files becomes an issue.

The multitail8 program allows display of multiple ASCII log files in a manner
similar to the use of the standard Unix command ‘‘tail -f’’. The console screen is
divided into a number of sections with a single log file displayed in each section (the
topology of how the screen is divided is also user specified; see Fig. 4 for an example
screenshot). Combination of this and use of small fonts allows monitoring of 10-20 log
files simultaneously. However, since the number of CPUs/cores used can be much larger
(e.g., each node typically has 2 CPUs with 4 cores each), the number of log files can be
quite large and this solution does not scale well beyond 10–20 log files. A more complete
survey for identifying a better technology is required.

8http://www.vanheusden.com/multitail

Bhatnagar, Ye and Schiebel 10

Figure 3: Figure showing a screenshot of the web interface to Ganglia. Top part of the screen
shows an overview of the cluster resource usage. The grid of plots in the bottom part of the screen
shows the CPU usage as a function of time for each of the 16 nodes.

6 Discussion

The goals of the work described in this memo were: (1) define and help in designing
a development cluster, (2) identify the software technology and build a framework for
deploying parallel applications for post-processing needs for the data volumes expected
from NRAO telescopes in the next few years, (3) test the framework and time the par-
allel applications to measure the speedup in wall-clock run-time, and (4) based on the
results, define the hardware parameters for the “final” cluster to be used by users for data
reduction.

The parameters of the cluster bought for development and the wall-clock run time is
described in Section 3. The software framework used for parallelization is described in
Section 4.

The image deconvolution step is the most expensive in terms of the actual run time.
Using 16-nodes, a speed up of 10 − 20× compared to single-node time was measured
using a data volume of ∼ 86 GB. The image size used in these tests was 1K × 1K pixels
on the sky with 1024 pixels along the frequency axis for spectral line imaging. The
CASA imaging software requires floating point buffers of size equivalent to 4 − 5× the

Bhatnagar, Ye and Schiebel 11

Figure 4: A screenshot showing use of the multitail program to monitor a number of log files
in a single window.

image size. For continuum imaging, 8 GB of RAM was sufficient. Since 8 GB RAM
was not sufficient for spectral line imaging, a number of disk scratch files were generated,
resulting in significantly higher effective disk I/O. As a result, all else kept constant, the
run time for spectral line imaging on a single node is ∼ 6× longer than for continuum
imaging.

While there was no I/O for accessing the image buffers during imaging, the run-time
for continuum imaging was dominated by the I/O required to access the data from the
disk (with 5 major cycles the total effective data I/O is equal to ∼ 500 GB). On the other
hand, while the data I/O was same for spectral line imaging, since the image buffers are
accessed in tight loops for iterative deconvolution, the run time here was limited even
more severely by the disk I/O required for accessing these temporary buffers from the
disk.

Bhatnagar, Ye and Schiebel 12

A crucial parameter for the cluster design therefore appears to be matching the avail-
able memory on the hardware to the memory requirements of the software. On the hard-
ware, the relevant measure for memory is the available memory per CPU/core used for
computing. The foremost software memory requirement comes from the required mem-
ory buffers which are a function of the image cube size. For spectral line imaging, this
can be large. From a cluster design point of view, a cluster with sufficient total memory
available across the cluster to hold these buffers should be the top priority. The memory
requirement for image buffers can be estimated using the following equation

Image buffer size = 4 × Nx × Ny ×
NCh

NNodes
[1 + 4 × NCoresPerNode] bytes (1)

For Nx = Ny = NCh = 1024,NCoresPerNode = 1, even with the current cluster parameters
(8 GB RAM per node), this limit is crossed using 4 nodes and one CPU per node. Using
only 4 nodes, the run time is limited by the data I/O time. However using 16 nodes for
imaging a ∼ 86 GB database, there is enough RAM to also hold all of the visibility data in
the RAM distributed across the cluster. The run time advantages of this are significant - we
indeed measure a super-linear speed up with number of nodes for spectral line imaging.
Increasing the RAM per node to 32 GB can hold 512 GB worth of buffers (of course
shared between the imaging buffers and the data buffers). It is therefore conceivable to
design and afford a cluster with enough total RAM and computing power to process larger
databases or larger images in extreme cases and possibly both for average data rates and
image sizes.

6.1 Data splitting

For this work, the data base was split along the frequency axis at spectral window bound-
aries for distribution across the cluster. Assuming averaging the frequency channels avail-
able per node provides enough signal-to-noise ratio (SNR) for calibration, this splitting of
the data is appropriate for both calibration and imaging. This, we think, will be the case
for a significant number of observations, at least initially. A different splitting of the data
will be required for imaging and calibration when a polynomial solver is required (e.g. for
when a low order polynomial or G-Spline is used to model B-Jones across the band). The
data base must be split across the frequency channel for imaging and across the time axis
for polynomial-based calibration. That said, it is possible to parallelize the inner loops of
the polynomial solver as well, which will mitigate the need for different splitting of the
data (this requires keeping two copies of the data at the nodes with the associated increase
in the required book-keeping complexity).

6.2 Serial computing and data communication

Spectral line imaging requires communication of the final image cubes from all nodes to
a single node (see section 3.2). Continuum imaging requires communication of residual
images from all nodes to a single node, a serial minor cycle followed by communication

Bhatnagar, Ye and Schiebel 13

of the updated model image to all nodes (see section 3.3). Note that the communication
of spectral images in spectral line imaging is a one-time operation done, if at all required,
at the end of the deconvolution iterations. Communication of images in the continuum
imaging case is required as part of the major cycle iterations.

All these operations (data communication and serial computing) scale poorly with
image size. Nx × Ny ×

Nchannels
Nnodes

floating point pixels in the spectral line case and 2 × Nx ×

Ny × NMa jorCycles floating point pixels in the continuum case are communicated across
the cluster inter-connect network where Nx, Ny, and Nchannels are the number of pixels
along the three axis of the image cubes and Nnodes is the number of compute nodes in the
cluster. The number of bytes corresponding to this data communication is however much
smaller than the data volume and the time for this data communication is relatively small
fraction of the total run time. The serial computing operation is the computation of the
final residual image. Assuming that the residual image fits in the RAM, this operations
scales linearly with image size (or the search size in the image).

We are currently using a 1 Gigabit inter-connect. For large images, the data com-
munication time might demand that a 10 Gigabit inter-connect be used. For the problem
sizes we need to address, a much higher bandwidth interconnect might not be required,
but this needs more careful assessment.

6.3 Error handling

The MultiEngineClient does provide some services to receive and handle exceptions
from the ipengine clients connected to it. No error or exception handling was imple-
mented in the framework described above. This is however crucial for robustness and for
production line software and needs more work and possibly more exploration of the opti-
mal approach for dealing with errors/exceptions in a distributed computing environment.

6.4 Cluster setup

As mentioned before, the current mechanism for initializing the software framework uses
home-grown shell scripts (see section A). Use of a more sophisticated and possibly easier
to use system using the IPCluster class is recommended. This also allows a more
complete specification for the cluster resources by the end user or for configuring a post-
processing pipeline (number of nodes, number of cores per node, names of the nodes,
etc.).

Bhatnagar, Ye and Schiebel 14

7 Appendix

A The startclients.sh Bash Script

The following Bash script was used to start the ipcontroller on the host machine
and ipengines using ssh on the list of machine named casa-dev-[01-15]. Since the
ipengines ultimately run casapy which writes the log files in the local directory, the
current directory is changed to a directory on the local disks at the nodes before starting
the ipengines. Standard out and standard error output streams of the ipengines are
redirected to the the local /tmp directory.

ipcontroller >| /tmp/ipcontroller.log &

echo "Starting local ipcontroller..."

sleep 10;

for c in $1

do

ssh -f casa-dev-$c "cd /home/casa-dev-$c/sanjay/PTEST; \

ipengine >| /tmp/engine.stdout 2>|/tmp/engine.stderr"

echo "Start on $c"

done

B The cluster.py Python Script

The various functions in the cluster.py script are briefly described below.

• pinit(message="Hello CASA Cluster"):

Function to setup the communication between the ipcontroller and the inter-
active IPython CASA interface. This function returns the MultiEnigneClient
object which is the primary scripting interface for communication with the cluster
nodes.

• startcasapy(rmec,root=PARALLEL CASAPY ROOT DIR):

Function to load the modified casapy.py script at the cluster nodes. This func-
tion must be called after successful execution of the pinit() function. The rmec
variable should be set to the object returned by the pinit() function.

• mkname(node,rootdir,workdir,basename,ext,regex=false):

Function to construct the directory and file names using node ID, and other user
defined strings. The file/directory naming convention used throughout the paral-
lelization framework is implemented in this function.

Bhatnagar, Ye and Schiebel 15

• rcmd(var,op,value):

A helper function to construct Python commands strings to apply the operator op
on variable var using value as the RHS of the operator. This is typically used to
construct strings like var=value.

• setUpFlagger(...), setUpGaincal(...), setUpBandpass(...),
setUpApplycal(...), setUpClean(...)

Functions to set up the variables of the flagdata, gaincal, bandpass, applycal,
and the clean tasks. Apart from task specific arguments, all these functions take
the following parameters

– rmec
The MultiEngineClient object returned from a successful call to pinit().

– nodes
A list of node IDs to be used for parallel computing and I/O.

– configfile=PARALLEL CONFIGFILES DIR+"<taskname>.last"
A task configuration file to set the task variables with a common value across
the nodes. PARALLEL CONFIGFILES DIR is a global framework variable point-
ing to the directory containing the configuration files.

– rootdir=PARALLEL BASE ROOT DIR
Path to the basename of the work-directory. PARALLEL BASE ROOT DIR is a
global framework variable.

– workdir=PARALLEL WORK DIR
Path to the name of the work-directory. PARALLE WORK DIR is a global frame-
work variable.

• pspectralline(...)

A function for parallel spectral line image deconvolution. This uses the setUpClean()
and calls MEC.execute(’go(’clean’)’) command.

• pcontinuum(...)

A function for parallel continuum image deconvolution. This uses the setUpClean()
function, and implements the deconvolution minor cycle as well.

