
EVLA Memo #132
Report on the findings of the CASA Terabyte

Initiative: Single-node tests

S. Bhatnagar
NRAO, Socorro

May 18, 2009

Abstract

This note reports on the findings of the “Terabyte-Initiative” of the CASA Project.
The presumed goal was to do “standard” processing of a data set of typical size ex-
pected from EVLA and ALMA. The data used for tests was in the Measurement
Set (MS) format containing 86 GB worth of simulated visibilities (2 hours synthesis
with 1024 channels, 4 polarizations, 2 fields and integration time of 1 second). The
expected average data volume from EVLA and ALMA in a 10hr observation in the
next 1–2 years is similar (the data volume for ALMA would be slightly larger than
EVLA).

The total time taken for “standard” processing on a single CPU for 1K × 1K × 1K
spectral line imaging (including flagging and calibration) for this data set was ∼ 30
times longer than the total observing time. Spectral line imaging dominates the total
run time by a large factor. Furthermore, the single-node run-time depends strongly
on the size (and possibly the shape) of the image cube (e.g. 1K × 1K continuum
imaging took ∼ 10hr while 1K × 1K × 1K spectral line imaging took ∼ 64hr). Part
of this strong scaling however might be related to the access pattern of the image cube
in the RAM and the data from the disk. With the existing code, the estimated total
run time split between I/O and computing was in the ratio 40% : 60%. However this
ratio can vary by a lot, depending on the code optimization and the hardware used.

Tests and work described here is appropriate for pipe-line processing. Manual
processing and/or data visualization could easily require more I/O (more reads of
the data) and consequently increase the time required for processing by an amount
which is not easy to determine (human free-will gets involved!).

1 Data Simulation

A data set was simulated for two fields with dwell times of 2m and 30m respectively at
4.8GHz, 4 polarizations EVLA B-array configuration with 1024 frequency channel across

1



S. Bhatnagar 2

800MHz bandwidth, spread across 32 spectral windows at an integration time of 1 sec-
ond. In the Measurement Set format, each row holds the data for all polarizations and all
frequency channels. The total number of such rows (Nrows) and total number of visibility
samples Nsamp is given by

Nrows = Nspw × N f ields ×
Nant(Nant − 1)

2
×

T
∆T

(1)

Nsamp = Nch × Npol × Nrows (2)

where Npol is the number of polarization products (4), Nch is the total number of frequency
channels (1024), Nant is the number of antennas in the array (27), Nspw is the number of
spectral windows (32), N f ields is the number of fields observed (2), ∆T is the integration
time (1s) and T is the total length of the simulated observations (2h) A list of the param-
eters used for simulation was given in Table 1. With these parameters, the total number
of rows in the MS were 86261760. The total size of the simulated visibility samples plus

Table 1: Parameters used for data simulation
λ 6cm the wavelength of observation
Nant 27 Number of antennas
Bmax 12.5 Km Max. baseline length
Nch 1024 Number of channels
Nspw 32 No. of Spectral Windows
Npol 4 Number of polarizations
T 2hr Total length of observations
∆T 1s Integration time
NFields 2 No. of fields observed

associated weights was 86 GB. This is roughly the I/O load for computing residuals in any
iterative algorithm (solvers for image or the calibration terms in the measurement equa-
tion). The total disk space required for processing (due to scratch data) was approximately
266 GB1. The channel width in the simulation was set to minimize bandwidth smearing
and the integration time was chosen to generate the data volume we think is appropriate
from the telescopes in the near future. In reality however, the typical integration time will
be longer (e.g. typical integration time with VLA is 10 second) but the number of chan-
nels required to minimize bandwidth smearing will be about the number of channels used
in this simulation. These parameters however can vary a lot depending on the scientific
goals (e.g. the number of channels can be an order of magnitude larger, etc.)

1Work in CASA is currently in progress to eliminate the scratch columns where not necessary. However
note that some scratch data on the disk is required during processing in all packages, including CASA.



S. Bhatnagar 3

2 Data volume

The bulk of the data volume comes from the storage of complex visibilities, weights and
(u, v,w) co-ordinates. This can be estimated by the following equation:

Data S ize = Nsamp

[
2 × Ncol × S oF + S oWt/Npol

]
+ (3)

Nrows × 4 × S oF

where Ncol is the number of data columns, S oF is the size of a floating point number in
bytes and S oWt is the number of bytes per weight storage. The first term in Eq. 3 repre-
sents complex visibility vector plus spectral weights storage. The second term represents
storage for time stamp and (u, v,w) co-ordinates. For Ncol = 3, S oF = 4 and S oWt = 4,
the size of the database is ∼ 250 GB for the storage of weights and complex visibilities
and ∼ 0.3 GB for the storage of the (u, v,w) and time-stamp The storage for a single data
column is ∼ 86 GB. Clearly, any optimization of data storage must focus on the first term
in Eq. 3.

The data used here was appropriate for EVLA. The expected average and peak data
rates for ALMA are quoted to be 6.4 MB/s and 64 MB/s respectively. The average and
peak data volume for a typical 12hr observation with ALMA would 256 GB and 2 TB
respectively. The minimum number of frequency channels from the ALMA correlator
would be 256.

3 Data Processing

In the absence of an agreed upon definition of “standard” data processing, with the goal
of identifying the most time consuming steps in “standard” data processing, the simulated
data set was passed through what we think are simplest of the “standard” data processing
steps required. In reality, the data processing step would be similar, but with parameter
settings that would require more computing and disk I/O. Hence, while the steps enumer-
ated below are close to steps one would take for a real data reduction process, the actual
run-time will vary with the requirements of the experiments (high dynamic range vs. low
dynamic range, complexity of the field, etc.).

Following are the data processing steps that were used:

1. While a data from the real telescopes (EVLA and ALMA) will need to go through
the process of translating the archive database to the Measurement Set (MS) for-
mat required by CASA, this step was not required here since the simulations were
also done using the CASA software which produced the data on the disk in the
MS format. However since the existing plan for EVLA processing would require
exporting the MS format to the UVFITS format, the data set was exported to the
UVFITS format using the exportuvfits task in casapy.

In an one-time operation, the MS was distributed across the cluster by splitting it
across the frequency axis. While not done for these tests, this operation can be



S. Bhatnagar 4

done in the background (i.e. loading the data for the next job, while processing the
current job on the cluster).

2. Flagging: Data flagging can vary from simple quacking (flagging few initial and
final integrations of each scan) to more elaborate RFI flagging routine. While the
I/O and computing requirements for quacking are small, for RFI flagging both
these can be large. For quacking, only the TIME and ROW FLAG columns need to be
read. RFI flagging on the other hand may need to read the entire visibility data set
and might need to read it multiple times. Hence the actual run time for flagging can
vary significantly.

3. Calibration: For Stokes-I imaging, the two required calibration steps involve solv-
ing for the G-Jones and B-Jones terms (the multiplicative antenna based and fre-
quency dependent complex gains). Solver for B-Jones essentially applies the G-
Jones solver for each channel (with on-the-fly correction for G-Jones and averaging
in time if required). Note that both G- and B-terms are solved for separately for
each parallel hand polarization product (RR and LL polarizations). Hence for both
these calibration steps, the software needs to read the entire data set. Note also
that both these steps are essentially independent of whether the final requirement is
spectral line or continuum imaging2.

4. Imaging: Imaging can be of two basic types: (1) continuum imaging where the
data from all channels are averaged on a single plane, and (2) spectral line imaging
where a separate image is made for each frequency channel. Additionally, imaging
can also include full polarization imaging requiring all Stokes image planes to be
made. The image size therefore can be Nx × Ny × Npol × Nch where Nch is 1 for
continuum imaging and Npol can be 1,2, or 4 (for Stokes-I, Stokes-IV and full stokes
imaging).

The image size depends on the maximum baseline length and the field of view
of interest. It is expected that for EVLA full-beam sensitivity limited imaging,
the field of view for deconvolution needs to include at least the first sidelobe of
the antenna power pattern. The number of pixels on a side required for Nyquist
sampled imaging with antennas of diameter D and a maximum baseline length of
Bmax is given by

Nx = 3 × η × Nlobes ×
Bmax

D
(4)

where Nlobes = 1 for the imaging only the main lobe and 2 for imaging up to the
first sidelobe of the antenna power pattern. η > 1, is required to minimize aliasing
effects and is often set to a value of 2.

2The current style of calibration involves three steps: (1) Solve of G-Jones, (2) apply G-Jones and solve
for B-Jones, and (3) use the solved G- and B-Jones to write out corrected visibilities. The corrected visibil-
ities are then used for imaging. While this nicely decouples the various steps enumerated above decouples
the problem into separate solvers and calibration, it results into two extra reads of all the visibilities.



S. Bhatnagar 5

4 Wall-clock Run Time

This section reports the measured run-time (wall-clock) for the various steps enumerated
above. These tests were done on a machine with 2 Quad-core Intel Xeon E5420 proces-
sors running at 2.5 GHz, each with a cache size of 6144 KB (L2 cache of 1.2MB). The
code is however not multi-threaded. Consequently only a single core was used in all these
tests. The CPU is rated3 at 40.0 GFLOPS (peak). The total RAM on the machine was
8 GB and available disk space was 934 GB. A summary of the measured wall-clock run

Table 2: Summary of the wall-clock run time for “standard” steps in offline data process-
ing.

Operation Run time
Flagging:quack only 23m

Flagging: clipping 66m

G-Jones solver 1h54m

B-Jones solver 1h53m

Data calibration 2h23m

Imaging 64h

Export UVFITS 1h30m

Total ∼ 74h

time for the various steps of processing are listed in Table 2 above. Some details of the
the various data processing steps follow.

1. Flagging: The flagdata task in casapy was used for this step. To make an es-
timate of realistic run-times for flagging, two kind of flagging was attempt: (1)
running the flagdata task in the quack mode, and (2) flag the data with ampli-
tude outside a user defined range. Note that both these kind of flagging is typically
required for most observations (spectral line or continuum). Note also that the I/O
requirements for these are very different and nearly span the range of I/O that the
any flagging algorithm would require.

The total run-time for quack for this data set was 23m.
The run-time for flagging data with amplitude outside a range was 66m

(the run-time for this operation is independent of the user defined clipping range).

2. Calibration: This step involved solving for first the G- and the B-Jones terms of
the measurement equation. G-Jones was solved on time scale of 2m while the time
constant for B-Jones was 20m. Both solutions were done for the target source which
contributes 95% of the data volume. Hence, this calibration run-time corresponds to
the “selfcal” run-time in practice. The run-time for primary calibration (i.e., B- and
G-Jones solutions for the calibrater field) is typically much smaller (few percent of
the total run time).

3http://www.intel.com/support/processors/xeon/sb/CS-020863.htm



S. Bhatnagar 6

The wall-clock run time for G-solver was: 1h54m.
The wall-clock run time for B-solver was: 1h53m.

Calibrating the data for G- and B-terms only (direction independent gains) involves
applying the complex transpose of the G- and B-Mueller matrices to the observed
data. The computing required for this step is small and the total time for this step is
also dominated by the one read and one write of the entire database. The run-time
for this step was 2h23m.

3. Imaging: For continuum Stokes-I imaging, an image size of 1K × 1K × 1K was
used to include the first side lobe of the antenna primary beam. Natural weighting
was used for imaging weights. For imaging, the total run-time is dominated by the
major-cycle in the iterative deconvolution iterations. The number of major cycles
in-turn is dependent on the kind of algorithm used for deconvolution and can sig-
nificantly vary from one algorithm to another. The total run time for the imaging is
therefore expected to be proportional to the number of major cycles.

The major-cycle involves a full prediction of the model visibilities followed by the
computation of the residual image. In the implementation in CASA, these opera-
tions together require a full access of the database. The run time for a major cycle
is therefore dominated by the computing load for doing gridding operation plus the
time required for full read of the visibility database.

For a 1000 component deconvolution with a loop gain of 0.1, the imaging required
5 major cycles. The total run-time for the Stokes-I continuum imaging test was 64h.
Note that a large number of temporary files were generated on the disk during imag-
ing indicating that there was significant swapping of the image cube from RAM to
the disk. This is partly because of the fact that it is required to hold equivalent of
4 − 5 image cubes4 in the RAM during imaging and the underlying libraries used
in CASA were not fully 64-bit compliant and partly due to the access patterns for
the image cube in the RAM and of the data from and to the disk. As a test of this
hypothesis, a 1K × 1K continuum imaging was done, which finished in ∼ 10hr.

4. UVFITS Export: The total wall-clock run time for exporting a single data column
of the MS using the exportuvfits task of CASA was about 1h30m.

4.1 Spectral line imaging vs. Continuum imaging

Spectral line imaging requires imaging each frequency channel in the database separately
followed by deconvolution of the images corresponding to channels which have signif-
icant signal in them. Continuum imaging on the other hand averages the visibility data
during gridding and image deconvolution is done on the resulting image. The only sig-
nificant difference therefore between continuum and spectral line imaging is in the minor
cycle (approximate removal of the PSF from the Dirty Image). The major cycle both cases

4Some of these are fundamentally required and some of the memory overhead is a trade-off to minimize
disk access for reading and writing the data per imaging major cycle.



S. Bhatnagar 7

goes through gridding and prediction of multi-channel database. Note that even for con-
tinuum imaging, a multi-channel database is required. Computationally as well as from
the data I/O load point of view, both type of imaging experiments are very similar.

Since the dominant run-time load is due to the major cycles, one would expect that
the run time for both kind of imaging experiments would be similar. However in practice,
the run-times are obviously vastly different. This is due to the vastly different run-time
memory requirements. As mentioned before, imaging requires equivalent of 4–5 full
sized images in the memory during iterative deconvolution5. While 8GB of RAM or
more is more than sufficient for typical continuum imaging, spectral line imaging with,
say 1024 channels (image cube of size 1K × 1K × 1K), these buffers do not fit in the
RAM resulting in excessive swapping and consequent increase in effective I/O load (these
buffers are accessed in tight loops for gridding/de-gridding with a quasi-random access
pattern). However even modest sized clusters with reasonable RAM per node is sufficient
to hold these buffers distributed across the RAM in the cluster. The run-time speed up for
distributed spectral line imaging is therefore partly due to distributed computing and I/O
and partly due to the elimination of the swapping of these buffers from the RAM.

For imaging of large field-of-view (e.g. at L-band with the EVLA or mosaicking
with ALMA) the memory requirements are high. It is possible to reduce this requirement
by use of smaller facets to cover sources of interest (particularly strong isolated sources
outside the main-beam). However it is unclear if this will help in a distributed computing
environment. More research in this area is required to estimate if there will be computing
benefits, keeping in mind that more advanced algorithms for imaging (and probably for
calibration) will be required in practice.

5 Discussion

Compressing the visibility data by a factor αc would reduce the I/O by a similar factor
but will increase the computing by a small factor which will depend on the compression
scheme. Assuming the computing required to un-compress the data in the memory to be
negligible, time taken for a single access of the entire visibility at the rate of RI/O bytes
per second is:

TI/O =
Data S ize
αc RI/O

(5)

Compute time varies for different operations and for different algorithms for imaging
itself. Since the most expensive operation is imaging, which in turn is dominated by the
computing required for the gridding step, we can estimate the compute-time for a single
gridding operation as:

Tcomp =
Nop S 2

Rcomp

[
Npolused Nsamp NIP

Npol

]
(6)

5This requirement is even higher for more advanced algorithms which will be used in practice. The
analysis here uses the simplest algorithms for clarity and clear identification of the issues.



S. Bhatnagar 8

where NIP is the number of image polarization planes, S is the convolution function sup-
port size and Rcomp is the effective number of FLOPS that the code can extract from the
CPU. Nop = 14 is the number of floating point operations required for gridding per pixel
of the convolution function. Npolused is the number of visibility polarization products used
to compute NIP image planes. The minimum value of Npolused is 2 when NIP = 1 or 2
(for Stokes-I only and Stokes-IV imaging) and the maximum is 4 when NIP = 3 or 4 (for
Stokes-IQU or full polarization imaging). All else remaining same, since the compute-
only time depends on the number of visibility points and I/O time depends on the data
size, data compression by a factor of 2 will reduce the run time significantly only if the
total run time is I/O dominated.

The total time taken for the “standard” processing of the data volume for the equiva-
lent of a typical 10h observation is ∼ 74h. This is ∼ 7 times slower than quasi real-time-
processing (defined as the ratio of processing time to observation time be ∼ 1.0). The
average data volume in 12hrs from ALMA is expected to be 256 GB. The data processing
steps for reducing ALMA data would be similar to those used in this test. The total run
time of average ALMA data could therefore be ∼ 20 times longer. Recall that the data
volume for realistic observations is expected to be larger for EVLA and the peak data
volume in 12hrs for ALMA would be about 2 TB.

The term in square brackets in Eq. 6 is the total number of visibility samples used
in a single gridding operation. Using the spread-sheet associated with ALMA DRSP6,
the average number of visibilities for ALMA is in the range 10 − 100 Giga samples.
Estimated computing time required for single gridding operation is in the range 1.3 −
13 hrs. Taking the total length of observation to be 69 hrs, and assuming 10 full access of
the data required for full scientific data reduction, post processing time for ALMA using
a single CPU could also be ∼ 10× the total observing time. Note that this figure could
easily vary by a factor of 2 − 5 due to larger number of full data accesses required in real
life as well due to larger than average number of data samples.

It should however be noted that the projected run-time for EVLA and ALMA dis-
cussed above assumes that the current single-node run-time is the best we can achieve.
At this time it is not clear if the code is fully optimized (e.g. for optimal use of available
RAM, sizes of the various buffers optimized for the available RAM, tiling pattern used
for storing the Measurement Set on the disk, optimal use of multiple cores per CPU, etc.).
Since a significant improvement in the single-node run-time will impact the design param-
eters for post-processing hardware, optimization of the existing software for improving
single-node performance is worth investigating. However, given the data volumes, I/O
and computing requirements of the various algorithms and the fact that in practice only
a fraction of the CPU peak FLOP rating can be harvested, it is clear that some parallel
processing will also be required. Improvements in single-node run-time can reduce the
scale but not eliminate the need of parallel processing. Efforts to improve the single-node
run-time should therefore be done keeping in mind that processing should scale well in a
parallel processing environment.

6ALMA Memo #501; http://almasw.hq.eso.org/almasw/pub/SSR/DatarateCalculationResults/AllDRSP.xls



S. Bhatnagar 9

6 Conclusion

The simulated data set was for single pointing EVLA observation. The parameters used
for the simulation were such that the data size is comparable to the typical data size expect
in the next few years and is also large enough to expose parts of data processing steps that
consume the largest amount of time but not so big that it becomes difficult to handle with
the available disk space and RAM.

The data was processed using the CASA software running on a machine with four
64-bit CPUs running at 2.5GHz with 8 GB of total available RAM and 934GB of disk
space. A single CPU is rated at 40.0 GFLOPS. Our code harvested 20% of the rated
GFLOPS. Simple experiments with OpenMP using 2 threads harvested ∼ 40% of the
single CPU power - the amount computing power harvested per CPU was still ∼ 20%.
However multi-threaded code also imposes significantly increase in the run-time memory
requirements (requires a complex image buffer per thread).

The computer operating system schedules independent processes on separated CPUs/cores
on a multi-CPU multi-core machines. Since analysis of the most time consuming opera-
tions show that an independent in-memory buffer for accumulation of intermediate results
might be required per thread, using OpenMP for lower level threading of the inner loops
might be no better than running independent OS level processes and combining the re-
sults from these processes at a higher level. The latter is easy to test (at the scripting layer)
without significant changes in the lower level code.

The data processing steps were chosen to be the typical steps one would take for
the simplest data reduction. It must be emphasized that such a test is appropriate for
pipeline processing - i.e. no manual flagging or visualization of the visibility data set was
attempted. In that sense, the CASA software for visibility data visualization has not been
exercised here for handling large data volumes. The data size used for this test was also
on the lower side of the expected data rates from EVLA or ALMA. Therefore, the run
times given here for various steps should be treated as the lower limits.

The computing needs can vary significantly depending on the imaging dynamic range
requirements and the complexity of field emission. In the tests done here, corrections for
none of the effects that will be required for noise limited full-beam imaging with the
EVLA were used. The I/O requirement to solve for direction independent gains is less
than that for image deconvolution involving several major-cycles. The I/O requirement
for some of the calibration algorithms that involve solving for direction-dependent gains is
similar to image deconvolution. The computing requirements for the algorithms that can
correct for these effects is higher than for the “standard” processing reported here. The
FLOPS per I/O ratio for such algorithms is therefore potentially higher. With easy avail-
ability of multi-core CPUs, this is a favorable direction of evolution of post-processing
algorithms. Efficient implementation utilizing multiple cores per CPU has the potential
of mitigating otherwise significant increase in total run-time.

Finally, while the tests were done for a single pointing observation, some useful con-
clusions can be drawn for mosaic imaging as well. For direction independent calibration,
the compute and I/O loads for calibrating mosaic data set are similar to that for single



S. Bhatnagar 10

pointing observations (the entire data has be read and written to the disk at least once).
The dominant time consumer for mosaic imaging is also the major-cycle. Since the major
cycle is really independent of the imaging mode (spectral line or continuum imaging of
single pointing or mosaic observations), the run time for imaging a mosaic data set will
also be limited by I/O load in the same manner as for the single pointing case.

6.1 High Performance Computing

For High Performance Computing (HPC) needs, assuming “normal” local disks at each
node, it appears that the largest reduction in the total run-time will happen by parallelizing
the I/O. Assuming that the hardware we will use for HPC is a cluster, the implication
is that we need a cluster with distributed disk storage across the compute nodes. Each
compute node will be used for calibrating and imaging a subset of the database which
will be distributed across the cluster. This will parallelize the I/O. Since in this model, the
I/O load is reduced by doing essentially distributed I/O, it also means that we do need to
parallelize the computing as well. This is a reasonable way forward since, as mentioned
above, more realistic data processing will have higher computing needs. Also once the
I/O is parallelized, beyond a certain number of nodes in the cluster, the time taken by each
node to do the work can be limited by computing. Once that limit is hit, use of multiple
CPUs/cores by either running multiple processes or multi-threading the inner loops might
be required (the former is more recommended as a the first step).

6.2 Recommendations for the cluster parameters

With the initial ideas about parallelization for the embarrassingly parallel problems at
hand, we think a cluster with local disks of capacity ∼ 300GB, at least 2 CPUs per node
(to allow experimentation with technologies like OpenMP) with 4K or more of L2 cache
per node will be appropriate. At the time or writing this memo, our own analysis as well
as discussions with other groups suggests that use of multiple CPUs/cores does in fact
requires a significant increase in the RAM requirements. We therefore recommend at
least 16 GB of RAM per node or more. Since there are significant run-time advantages
in keeping the data and the buffers required during processing in the RAM, in case the
amount of RAM per node is limited by cost considerations, we further recommend that,
number of CPUs per node and/or cores per CPU be traded for the size of the RAM per
node. The kind of interconnect we might want depends strongly on the algorithms we
will use (strong dependence on the amount of cross talk between the nodes). Our tests
with a 16-nodes cluster so far suggests that a 10 Gbit/s interconnect with NFS to access
the local disks of the nodes might be sufficient.

The bandwidth between the CPU/L2 cache and RAM will however dominate the
compute-only time (or equivalently, the effective number of FLOPS we can harvest). This,
I believe, will also become an issue even if we were to use OpenMP locally at the nodes.
A technology survey in this area will be most useful - e.g. nodes with CPU and RAM on
a fast bus (Hyper Transport) will probably be very useful.


