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Abstract

This document presents an analysis and comparison of existing multi fre-
quency synthesis algorithms along with some hybrids, from the point of view
of (E)VLA wide-band imaging requirements of ∼1µJy rms noise and > 106 dy-
namic range from an 8 hour observation over a bandwidth of 1GHz at L Band.
Tests on simulated wide-band data with power law (and non power-law) spectra
show the following. (i) Single channel deconvolution techniques are inadequate
due to the limiting single channel sensitivity and the varying spatial resolution
across channels. (ii) Bandwidth synthesis along with double deconvolution tech-
niques that model the spectral variation as a power law work well for sources
with pure power law spectra. For non power-law spectra, especially with large
scale weak emission, inaccuracies in the estimation of the actual spectral signa-
ture of the sources lead to deconvolution artifacts at the 10µJy level. (iii) Hybrid
techniques that combine single channel imaging and bandwidth synthesis using
a power law model for spectral flux variation, work well when only bright and
compact sources have significant spectral flux variation. Therefore, alternate al-
gorithms (or variants) must be devised to extend the modeling of the spectral
flux variation beyond that of a pure power law and simultaneously account for
the accurate deconvolution of extended emission.
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1 Introduction

Multi frequency synthesis (MFS) imaging in radio interferometry, involves gridding
visibilities from different frequency channels separately to eliminate bandwidth smear-
ing, and augmenting the deconvolution process to take into account flux variations
across the observing band. The goal of any MFS algorithm is to produce a high dy-
namic range continuum image with minimal deconvolution errors due to spectral flux
variation, while using the entire data set for increased sensitivity.

MFS imaging algorithms have so far been designed primarily from the point of view of
enhanced UV coverage provided by multi channel data from relatively sparse arrays.
These algorithms are reported to produce images with dynamic ranges of about 1000 to
1 and negligible deconvolution errors (within the rms noise) up to bandwidths of 25%.
The Conway/Sault algorithm is currently the most advanced in terms of accounting
for spectral flux variation while deconvolution, but it assumes a relative power law
spectrum between image pixels which translates into the assumption of a constant
spectral index across the band.

The planned EVLA bandwidths (50%) with 16384+ observing channels, are much
larger than before, and have been chosen to allow the production of wide-band con-
tinuum images with increased sensitivity (∼ 1µJy), and spatial dynamic ranges of
> 106. Over these large bandwidths, the assumption of a pure power-law spectrum
often breaks, and it is not clear how well the existing algorithms will perform in terms
of achievable dynamic ranges and deconvolution errors due to approximately estimated
spectral flux variation.

This document presents an analysis and comparison of some existing algorithms, from
the point of view of wide-band imaging requirements of ∼ 1µJy rms noise from an
8 hour (E)VLA observation over a 1GHz band at L Band. Some hybrid techniques
are also presented along with a suggested extension of the Conway/Sault algorithm
to include component based imaging via multi-scale deconvolution. All the analysis
in this report is based on data simulated in AIPS++, and algorithms implemented in
AIPS++ and Miriad.

2 Sensitivity Calculations

EVLA system specifications for an 8 hour VLA C array observation with a 1GHz
bandwidth at L Band give Stokes I image sensitivities calculated as follows.

The sensitivity (lowest detectable flux above the noise) for the output from a single
baseline (or, the noise per visibility value) is given by

∆Vij =
1

ηs

SEFD√
2∆ντacc

(1)

where SEFD = 1023Tsys/K Jy and K = ηaA/2kB. τacc is the per visibility
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integration time in seconds, ∆ν is the channel bandwidth in Hertz, A is the collecting
area of an antenna in cm2, ηa is the antenna efficiency, ηs is the system efficiency and
Tsys is the antenna system temperature in K.

The image sensitivity for a single channel stokes I image (using RR and LL data) is
given as

∆Im =
1√
2ηs

SEFD
√

N(N − 1)∆ντint

(2)

where τint is the total integration time in seconds. The factor of
√

2 in the denominator
is for the two independant data channels (RR and LL). The image sensitivity for a
multi-frequency image over Nch channels is given as ∆Im/

√
Nch.

In terms of eqn 1, this is equal to the numerical estimate based on the number of data
points as given by

∆Im =
∆Vij

√

N(N−1)
2

NchNtNpol

(3)

where Nt = τint/τacc is the number of timesteps and Npol = 2 for a stokes I image that
uses the RR and LL polarizations.

Below are a set of observation parameters and corresponding image sensitivities.

Tsys = 35K,ηa = 0.55,ηs = 0.78,N = 27,A = π(12502)cm2,τint = 8hr, τacc =
300sec,∆ν = 10MHz,Nch = 128 and Npol = 2.

SEFD : 357.803 Jy

Total effective bandwidth : 1280 MHz

Noise per visibility : 5.92e-03 Jy

Image Sensitivity : 2.01e-06 Jy

With Nch = 32 and a total bandwidth of 320MHz spread over 1280MHz, the sensitiv-
ity is multiplied by

√
4 to correct for the smaller number of channels, to give 4.03e-06

Jy.

3 MFS Simulations and Results

3.1 Simulation Parameters

Point source data was simulated with five point sources with peak flux levels of 100mJy,
10mJy, 1mJy, 100µJy, 10µJy. The single channel noise was comparable to the flux of
the weakest source. In simulations with non-zero spectral index, only the 10mJy source
had a non-flat spectrum over the observing bandwidth of 1.2GHz.

Extended emission data was simulated with five components as per the flux and spectral
characteristics of a typical core-jet-hotspot. The brightest component (100mJy) had a
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Table 1: Data Simulation Parameters

Array VLA C array
Observing Band LBand (1420MHz)
Total Bandwidth 320MHz (spread over 1280MHz)
Delta ν 40MHz
Frequency Resolution 10MHz
Frequency range 785MHz to 1985MHz
Reference Frequency 1420MHz
Number of channels 32
Cell size 2 arcsec
Image size 1024x1024 pixels
Image field of view 34 arcmin
Integration timestep 300 s
Total integration time 8 hours
Number of timesteps 8*3600/300=96
Noise per visibility 1e-03 Jy

RMS noise in single channel image 1e-03/
√

351 ∗ 1 ∗ 96 ∗ 2=3.85e-06

RMS noise in mfs image 1e-03/
√

351 ∗ 32 ∗ 96 ∗ 2=6.8e-07
Expected Dynamic Range 0.1/6.8096e-07=1.468e+05

flat spectrum, the 10mJy hotspot had a spectral index of 0.7, and the diffuse ’jet’ had
flux levels between 10µJy and 100µJy with spectral index varying between 0.1 and 0.5.

Parameters used in the simulations for testing the current algorithms are as follows.
They correspond to a Tsys of about 20K, and ηa and ηs around 0.80.

Note : Only 32 channels were used because of data processing restrictions at the time
of performing these tests. Algorithms that manipulate image cubes in AIPS++ load
entire cubes and thus lead to errors because of limited usable RAM and AIPS++ tiling
bugs. The true VLA antenna specifications could have been used along with a larger
number of channels, and larger total obsrvation time to give the same ∼ 1µJy rms
noise. Increasing the number of channels and thus reducing the rms noise in the MFS
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image, would clearly demonstrate the disappearance of a weak source within the single
channel noise for single channel deconvolution techniques.

Computational requirements arising from the large number of channels being planned
(16384+), and the potential effect this may have on the structure of the algorithms,
have not yet been investigated for multi-frequency synthesis imaging.
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3.2 Algorithms

Channel Averaging (AVG) Bandwidth Synthesis
(BWS)

Multi Frequency Clean
(MFC)

The simple technique of
deconvolving each channel
separately, and computing
the final value per pixel
by averaging over the fre-
quency axis.

Grid visibilities from each
channel onto separate uv
tracks to avoid bandwidth
smearing, and perform a
single deconvolution to ob-
tain a continuum map with
no spectral information re-
tained. (AIPS++ MFS
settings in imager)

Grid visibilities from each
channel onto separate uv
tracks and perform a dou-
ble deconvolution to obtain
a continuum map as well
as an effective spectral in-
dex map (first two terms of
a Taylor expansion in ν).
(MIRIAD mfclean).

(+) Simple with no decon-
volution errors due to spec-
tral variation.

(+) Performs a joint decon-
volution that benefits from
the added sensitivity gain
of using data from all chan-
nels together. Works well
for flat spectrum sources.

(+) Performs a joint decon-
volution across channels
and also produces an ef-
fective spectral index map.
Works for power law spec-
tra with a fixed spectral in-
dex across the band.

(−) Sensitivity is limited
by single channel noise.
Sources that are fainter
than the single channel
noise will not be de-
tected and cannot be accu-
rately recovered after aver-
aging. Also the relatively
sparse uv coverage will pro-
duce more structural er-
rors related to deconvolu-
tion. Resolution is limited
by the largest clean beam.

(−) This algorithm as-
sumes that all sources in
the image have a flat spec-
trum across the frequency
band. If the spectrum of a
source is not flat, all visibil-
ity values after combined
gridding of multi channel
data do not represent the
same source flux and de-
convolution errors will oc-
cur. A modification to
scale all channels accord-
ing to an average spec-
tral index (over all sources)
will reduce deconvolution
errors.

(−) The current miriad im-
plementation of MFClean
fits for a log linear spec-
trum with a fixed effec-
tive spectral index per im-
age pixel. Deconvolu-
tion errors result when the
spectrum is not log linear
(for example, a non-zero
first order spectral index
term, or a turnover fea-
ture). Low level extended
emission is not completely
deconvolved.
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3.3 Results

Figures 1-7 show the reconstructed image and the corresponding residual image for
each algorithm, along with a set of measures to compare the relative accuracies of the
algorithms. Separate estimates for on-source and off-source regions were computed
using masks created by thresholding the known true image at a 2σ level. Only the
inner quarter of each image was considered for CLEANing. All results are based on
automated runs of existing standard algorithms on simulated data. Carefully tuned
deconvolution could in some cases result in better reconstructions.

Listed along with the results of each sample run are the following quantities.

1. Off source RMS : The achieved noise level in regions away from the true source.

2. Peak residual : The magnitude of the peak of the residual image. It represents
the flux level of the minimum detectable/believable feature.

3. Dynamic Range (w.r.t. rms) : The ratio of the peak of the resonstructed image
to the off-source rms. It represents the maximum dynamic range achieved in the
image.

4. Dynamic Range (w.r.t. peak residual) : The ratio of the peak of the reconstructed
image to the peak residual. It represents the achieved dynamic range w.r.t.
believable features.

5. χ2
normalized

1 (entire image) : A measure of image fidelity, computed as the nor-
malized χ2 between the reconstructed image and the known true image. This
number represents the total power present in the difference image, in multiples
of the expected thermal noise level.

6. χ2
normalized (on-source) : A measure of image fidelity via normalized χ2, com-

puted only over on-source pixels chosen via a mask. It estimates the total power
present in the difference image in regions of known non-zero flux and measures
the accuracy of the on-source reconstruction, with respect to the thermal noise
level.

7. χ2
normalized (off-source) : A measure of image fidelity via normalized χ2, computed

over off-source pixels. Any deconvolution errors resulting in spurious features in
regions of no true flux, are reflected in this estimate.

1χ2
normalized

computed as
1

n−1

P

n

i
(Irestored

n
−I

true

n
)2

σ2

thermal

is equivalent to the F-statistic used to compare

sample sets of different variances (see Appendix II). The absolute error on χ2
normalized

is based on
the number of points used in the computation, and is derived from the expression of variance of the
F-statistic. Few merits of using χ2

normalized
to estimate image fidelity instead of the median image

fidelity estimate given by median[Irestored
n

/(Irestored
n

− Itrue
n

)] are as follows. χ2
normalized

has an ideal
value of 1.0 corresponding to a true reconstruction and this can be used as a reference value. It is
a statistically sound measure that is sensitive to any non-zero mean flux in the difference image as
well as to the difference between the achieved rms noise and the expected thermal noise level. Also,
√

χ2
normalized

represents the total deviation as a multiple of the thermal noise (nσ).
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3.3.1 Point Sources

1. Figure 1 shows the results for a run with zero spectral index. The AVG restored
image shows relatively broadened components due to the varying spatial resolu-
tion for each channel. The residuals show traces of all sources implying that the
amplitudes and shapes of all the flux components have not been recovered well
enough. On this run, deeper CLEANing was not possible on the individual chan-
nels due to the limiting single channel noise. The high on-source and off-source
χ2

normalized estimates reflect this.

The MFC and BWS results show no extended deconvolution errors, and reach
rms levels 1 − 2σ, producing the expected dynamic range of 105 for this image.
The peak flux reconstruction was accurate to approximately 1σ for both the BWS
and MFC algorithms with χ2

normalized ≈ 25. (The high on-source χ2
normalized for

the MFC algorithm is the result of a slight difference in the restoring beams used
by AIPS++ and MIRIAD.).

2. Figure 2 shows the results for a run where one source has a spectral index of 0.5.
The AVG images show no errors due to the changing spectral index of one source
but have incorrect flux levels and the effect of varying spatial resolution. The
image fidelity and residuals remain relatively poor.

The BWS images show the effects of not taking into account the changing spectral
index of one source. Deconvolution errors around this source arise because of the
difference between the actual and assumed flux levels in each channel. A factor
of 100 increase in on-source χ2

normalized in comparison to that in Figure 1 reflects
this.

The MFC images show the result of fitting for a log-linear spectrum in terms of an
effective spectral index parameter. There are no extended deconvolution errors
down to the level of the thermal noise, and the expected maximum dynamic range
of 105 is acheived.

3. Figure 3 shows the results for a run where one source has a spectral index that
varies between 0.5 and 1.6 over the observing band. The data was simulated by
adding a first order term to the spectral index α0 + (ν − ν0)

dα
dν

.

The AVG images show characteristics similar to the previous runs with no discern-
able deconvolution errors due to inaccurately modelled spectral flux variation, but
with incorrect on-source flux and sensitivity limited by the single channel noise
level.

The BWS images show significantly more deconvolution error around the source
in question. This is also reflected in the reduced dynamic ranges, and higher
on-source χ2

normalized as compared to previous runs. The MFC images also show
error, but due only to the changing α. These errors are at the 2σ level and result
in higher residuals and therefore lower maximum dynamic range.
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3.3.2 Point Sources : Hybrid techniques

The following techniques are based on estimating spectral index information from single
channel maps. There are three sources of error in this approach. First, the single
channel noise limits the sensitivity of each image in the stack and this can be improved
only by deconvolving all channels together. Second, since the channel deconvolutions
are independant of each other, there will be noise associated with the spectral variation
across channels and this can be reduced by fitting a smooth function to the spectral
variation to estimate the spectral index. Third, the resolution element varies in size
across channels and can be a source of positional uncertainty in each component. This
too can be improved only by deconvolving all channels together.

1. MFC+AVG (Figure 4(left))

(a) Divide data into chunks of frequency channels.

(b) Perform MFClean on each chunk.

(c) Average the final maps together.

This technique is equivalent to approximating the spectrum due to a varying
spectral index by a piecewise log linear spectrum. It gives images which do
not show deconvolution errors due to a non-flat spectrum, but the noise level
is higher due to the individual deconvolutions having less sensitivity. This also
raises the possibility that the deconvolution features are just being masked and
not eliminated. Also, the full resolution of the combined psf is not obtained.

2. BWS+AVG (Figure 4(middle))

(a) Deconvolve each channel separately and estimate the shape of the spectrum
per pixel by fitting to the image cube.

(b) Flatten out the image cube by rescaling each channel per pixel by the esti-
mated spectrum.

(c) Predict new flat spectrum visibilities and perform a Bandwidth Synthesis.

(d) Expand the resulting model image into a spectral cube, and rescale each
channel per pixel to reapply the estimated spectrum.

This method does not show artifacts due to spectral variation, but the weakest
source that was not detected in the single channel maps, was completely random-
ized out due to the application of ’noisy’ scaling factors while flattening out the
image cube.

3. AVG+BWS (Figure 4(right))

(a) Deconvolve each channel separately, upto the single channel sensitivity limit.

(b) Perform a visibility subtraction (using visibilities predicted from the model
image cube) to remove the contribution of bright (spectrally varying) sources.
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(c) At this stage, the peak brightness is at the level of the single channel noise
limit. Perform an MFClean or bandwidth synthesis on the resulting visibil-
ities.

Weak sources within the single channel noise will be detected during the third
step of the procedure. If however the weakest sources are also spectrally varying
beyond a power law, deconvolution errors will appear below the single channel
noise level. However, depending on the continuum noise limit, the peak contri-
bution from the higher order beams could now be negligible, and therefore may
not need to be accounted for in the third step.

All three hybrid algorithms showed no discernable deconvolution errors resulting from
incorrectly estimated spectral flux variation, but the on-source flux reconstructions
were no better than the other algorithms.

3.3.3 Error Analysis

Following the discussion from section 2.3 of Conway,Cornwell,Wilkinson,1990, esti-
mated peak values of the spectral beams can be used to define noise levels above which
the contribution from any residual spectral beams becomes negligible.

For point sources, the peak values of the different spectral beams can be estimated
from the peak brightness and spectral index of the source. The maximum sidelobe
levels for the first two higher order beams (beyond the regular psf) can be estimated
to be Iα/200 for B1, and Iα2/2000 for B2.

For the simulations performed in this study, this corresponds to ∼ 20 − 80µJy and
∼ 3−10µJy, for the 10mJy source with spectral index α varying between 0.5 and 1.6.

The simulations (Figure 3) using bandwidth synthesis assuming a flat spectrum show
peak residuals at 10µJy, and considerable deconvolution errors. The MFClean algo-
rithm which takes into account the first order beam, shows peak residuals at ∼ 8µJy,
which are at the level expected for the unaccounted-for second order beam.

For the AVG+BWS hybrid, at the end of second step, the peak flux was at the single
channel noise level of ∼ 4µJy, leading to a peak first order beam sidelobe at 0.14µJy.
This is lower than the theoretical continuum limit of 0.7µJy, and a flat-spectrum
assumption sufficed.

3.3.4 Extended Sources

Extended emission data was simulated with five components as per the spectral char-
acteristics of a typical core-jet-hotspot. The brightest component (100mJy) had a flat
spectrum, the 10mJy hotspot had a spectral index of 0.7, and the diffuse ’jet’ had flux
levels between 10µJy and 100µJy with spectral index varying between 0.1 and 0.5.
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Figures 5, 6 and 7 show the results for runs with this extended source, for total band-
width of 320MHz, 640MHz, and 1200MHz respectively.

The AVG image shows low level large scale deconvolution errors arising from the limit-
ing single channel sensitivity. The BWS algorithm produced more accurate on-source
flux reconstruction with no discernable large-scale deconvolution errors. It shows errors
primarily due to the spectrally varying flux of one source. The MFC algorithm was
able to model a power-law component of the spectrally varying source, and reach a
lower residual rms, but low level large scale deconvolution errors remain at the 10µJy
level. None of the algorithms reached the expected thermal noise and dynamic range.

Comparing the results from figures 5, 6 and 7, the only noticeable trend is that large
scale low level deconvolution errors decrease with larger total bandwidths (and hence
more total flux variation). Note that the separation in frequency between individual
channels has been scaled according to the total bandwidth.

4 Conclusions

Existing multi frequency synthesis algorithms were tested on simulated wide band data,
with the goal of determining how they perform against the requirement of O(106)
dynamic range and O(1µJy) image sensitivity. Tests were performed on data with
point sources as well as extended flux components. The results were evaluated based
on achieved rms levels as compared to the theoretical expected thermal noise, achieved
dynamic ranges as compared to those expected, the amount of large scale deconvolution
error, and image fidelity in terms of χ2 between the restored image and a known true
image, normalized w.r.t. the expected thermal noise.

1. Single channel imaging and averaging is by itself inadequate, due to the sin-
gle channel sensitivity limit and the varying spatial resolution across channels.
Hybrid techniques that combine single channel imaging along with bandwidth
synthesis using a power law model for spectral flux variation, are applicable only
to data in which only bright sources have a power-law spectrum. Also, the re-
constructed on-source flux tends to depend on the algorithm used, and low level
emission with varying flux across channel (as is often the case with extended
emission), is not deconvolved accurately enough.

2. Pure bandwidth synthesis assuming a flat spectrum for all sources reaches 2σ
rms levels, and approximately gives the expected dynamic range. On-source flux
reconstructions accurate to within the noise for flat-spectrum sources. Deconvo-
lution artifacts however surround sources with a non flat spectrum, reducing the
dynamic range w.r.t. the peak residual by an order of magnitude.

3. Bandwidth synthesis with techniques to estimate and fit for power law spectral
variations via coefficients of a series expansion across frequency (Conway/Sault
double deconvolution), work for sources with power law spectra. For point sources
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with pure power-law spectra, the MFClean algorithm reaches 1σ rms levels and
expected dynamic ranges. Point sources with non power-law spectra result in
10µJy level errors. For extended sources with large scale weak emission and non
power law spectra, inaccuracies in the estimation of the spectral signature of
the large scale emission leads to large-scale deconvolution artifacts at the 10µJy
level. In most cases, the dynamic range w.r.t. the peak residual is an order of
magnitude lower than the maximum expected dynamic range (calculated w.r.t.
the off source rms).

Note that in both cases, an average spectral index across the entire image can be
estimated and corrected for and if all sources have similar spectral flux variation, this
could considerably reduce the deconvolution errors.

Conway/Sault double deconvolution involves the simultaneous deconvolution of the
regular dirty beam as well as a spectral dirty beam corresponding to the first order
term of a series expansion of the flux estimate as a function of frequency. It is currently
a CLEAN based point source model deconvolution. Also, for large bandwidths, the
power-law assumption is likely to break down, and the higher order terms of α need
to be corrected for as well. Therefore, a scale sensitive variant of the double deconvo-
lution algorithms along with the estimation of higher orders of the series expansion,
should considerably improve the performance by reducing the error due to incorrectly
estimated flux variation across the band as well as deconvolution errors in the case of
extended emission. A multi scale extension to the Conway/Sault algorithm is currently
being worked on.
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Appendix I : Images and Statistics

Figure 1: Point Sources with spectral index α = 0.0 (flat spectrum) : AVG,BWS,MFC
(top) Restored Image (bottom) Residual Image

Image statistics

Flat Spectrum point sources Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range
(w.r.t. rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.008e-06 2.165e-05 9.916e+04 4.618e+03
Bandwidth Synthesis (BWS) 1.122e-06 5.66e-06 8.911e+04 1.767e+04
Sault Algorithm (MFClean) 9.369e-07 4.689e-06 1.067e+05 2.133e+04

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.05112 χ2

norm± 0.001953
AVG 1.981e+04 2.696e+07 1.105e+02
BWS 1.041e+00 2.497e+01 1.024e+00
MFClean 3.841e+03 5.255e+06 1.124e+00
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Figure 2: Point Sources with α = 0.5 for one source (log linear spectrum) :
AVG,BWS,MFC (top) Restored Image (bottom) Residual Image

Image statistics

Point Sources with spectral
index = 0.5 for one source (log
linear spectrum)

Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.009e-06 2.163e-05 9.912e+04 4.624e+03
Bandwidth Synthesis (BWS) 1.253e-06 7.018e-06 7.978e+04 1.425e+04
Sault Algorithm (MFClean) 9.388e-07 4.507e-06 1.065e+05 2.219e+04

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.05139 χ2

norm± 0.001953
AVG 1.977e+04 2.719e+07 1.106e+02
BWS 2.869e+00 2.428e+03 1.115e+00
MFClean 3.805e+03 5.263e+06 1.134e+00
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Figure 3: Point Sources with α varying between 0.5 and 1.6 for one source :
AVG,BWS,MFC (top) Restored Image (bottom) Residual Image

Image statistics

Point sources with spectral in-
dex varying between 0.5 and
1.6 for one source

Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.007e-06 2.164e-05 9.926e+04 4.621e+03
Bandwidth Synthesis (BWS) 1.849e-06 1.033e-05 5.408e+04 9.679e+03
Sault Algorithm (MFClean) 1.038e-06 9.607e-06 9.638e+04 1.041e+04

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.05222 χ2

norm± 0.001953
AVG 1.978e+04 2.812e+07 1.126e+02
BWS 8.282e+00 9.66e+03 1.522e+00
MFClean 3.101e+03 4.427e+06 1.113e+00
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Figure 4: Point Sources with α varying between 0.5 and 1.6 for one source : (top)
Restored Image (bottom) Residual Image for (left) Hybrid MFC+AVG : MFC on 8
channel chunks followed by channel(chunk) averaging. (middle) AVG+BWS : Estimate
spectrally varying flux from single channel maps and flatten out the visibilities before
doing a BWS - high noise due to addition of sum of channel restored image, instead
of working with model images. The residuals shown here are with respect to the
flattened predicted visibilities and not the original data which is why they do not show
the weakest source. (right) AVG+BWS with partitioning : Restored image shows only
flux below the single channel noise and residual image corresponds to the complete
model

Point sources with spectral in-
dex varying between 0.5 and
1.6 for one source

Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.007e-06 2.164e-05 9.926e+04 4.621e+03
Bandwidth Synthesis (BWS) 1.849e-06 1.033e-05 5.408e+04 9.679e+03
Sault Algorithm (MFClean) 1.038e-06 9.607e-06 9.638e+04 1.041e+04
MFC + AVG 1.705e-06 8.607e-06 5.865e+04 1.161e+04
AVG + BWS 1.130e-06 5.733e-06 8.849e+04 1.744e+04
AVG + BWS (partitioning) 1.128e-06 5.829e-06 8.865e+04 1.715e+04
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Figure 5: Extended emission with total bandwidth = 320MHz : AVG,BWS,MFC (top)
Restored Image (bottom) Residual Image

Image statistics
Algorithm Off-

source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.501e-06 2.146e-05 6.662e+04 4.659e+03
Bandwidth Synthesis (BWS) 1.196e-06 5.284e-06 8.361e+04 1.892e+04
Sault Algorithm (MFClean) 1.203e-06 1.813e-05 8.313e+04 5.515e+03

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.02089 χ2

norm± 0.001955
AVG 6.119e+03 1.394e+06 1.303e+00
BWS 1.208e+03 2.751e+05 1.099e+00
MFClean 3.756e+03 8.556e+05 1.166e+00
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Figure 6: Extended emission with total bandwidth = 640MHz : AVG,BWS,MFC (top)
Restored Image (bottom) Residual Image

Algorithm Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.445e-06 2.142e-05 6.920e+04 4.6683+03
Bandwidth Synthesis (BWS) 1.206e-06 6.041e-06 8.291e+04 1.655e+04
Sault Algorithm (MFClean) 1.233e-06 1.214e-05 8.110e+04 8.237e+03

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.02147 χ2

norm± 0.001955
AVG 7.693e+03 1.852e+06 2.482e+00
BWS 5.112e+02 1.228e+05 1.101e+00
MFClean 2.953e+03 7.107e+05 1.137e+00
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Figure 7: Extended emission with total bandwidth = 1200MHz : AVG,BWS,MFC
(top) Restored Image (bottom) Residual Image

Algorithm Off-
source
RMS (Jy)

Peak
residual
(Jy)

Dynamic
Range (w.r.t.
rms)

Dynamic
Range (w.r.t.
peak residual)

Channel Averaging (AVG) 1.398e-06 2.172e-05 7.153e+04 4.604e+03
Bandwidth Synthesis (BWS) 1.241e-06 6.016e-06 8.058e+04 1.662e+04
Sault Algorithm (MFClean) 1.562e-06 1.217e-05 6.402e+04 8.216e+03

Image fidelity in terms of χ2 between the restored image and a known true image,
normalized with respect to the expected thermal noise.

Algorithm Entire image Weighted on source Weighted off source
χ2

norm± 0.001953 χ2
norm± 0.02296 χ2

norm± 0.001955
AVG 1.474e+04 4.039e+06 7.591e+01
BWS 2.292e+00 3.170e+02 1.145e+00
MFClean 1.313e+03 3.605e+05 1.092e+00

19



Appendix II : Image Fidelity

Let Nσ be a set of independant gaussian random samples drawn from N(0, σ). Let
Strue be a reference (true) image, and let S = Strial + Nσ be the sample image to be
compared with the true image.

One choice of a single number to represent image fidelity is the normalized χ2 between
the Strue and S. This is equivalent to computing a signal to noise ratio between the
total power due to signal plus noise, and the total power due only to noise. These total
power estimates used in the χ2 computation are equal to the respective autocorrelation
functions, evaluated at zero lag. They are also equal to the variances, evaluated with
zero mean.

The difference image D is given as

D = S − Strue = (Strial − Strue) + Nσ (4)

Let V (D) denote the sample variance of D with respect to zero mean. The normalized
χ2 gives a goodness-of-fit estimate for the sample image S as

χ2
normalized =

V (D)

σ2
(5)

To get goodness-of-fit estimates separately for on-source and off-source regions of an
image, a weight mask W comprising of zeros and ones can be used. Let nw be the
number of pixels selected by these weights. The sample variance calculated with respect
to zero mean, will be given as

V (D) =
1

(nw − 1)

n
∑

i

WiD
2
i (6)

Here, χ2
normalized is also the F distribution statistic used to compare between two sets

of samples having different variances. One sample set is a reference noise image with
true variance σ2. The other is the difference signal D.

The merits of using Eqn 5 as an estimate of goodness of fit (and hence image fidelity)
are as follows.

1. Since V (D) relates to total power, the F statistic is sensitive to differences be-
tween the variance of D and that of the thermal noise (σ2).

2. Since a zero mean is assumed in the calculation, any non-zero mean component
in D will also be accounted for as it contributes to the total power.

3. The ideal case of pure thermal noise in D results in χ2
normalized equal to 1.0±ǫ.
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F distribution

The F distribution 2 is a continuous statistical distribution which arises in the testing
of whether two observed sample sets have the same variance. Let χ2

n and χ2
m be

independent variates distributed as chi-squared with n and m degrees of freedom.

The F statistic is defined as the ratio of the dispersions of the two distributions

Fn,m ≡ χ2
n/n

χ2
m/m

(7)

The variance of the F distribution is given as

σ2
F =

2m2(m + n − 2)

n(m − 2)2(m − 4)
(8)

Note that for a sample set of size n, χ2
n−1 = (n − 1)

[

sample variance

σ2

]

.

Now, in our case, the reference set of size m (corresponding to all pixels in the image)
is chosen to have a sample variance of σ2.

σ2 ≡ Sample V ariance =
1

m − 1

m
∑

i

N2
σi =⇒ χ2

m−1

(m − 1)
=

σ2

σ2
= 1 (9)

And for a sample set of size nw,

χ2
nw−1 = (nw − 1)

V (D)

σ2
(10)

Therefore,

Fn−1,m−1 =
χ2

n−1/(n − 1)

χ2
m−1/(m − 1)

=
χ2

n−1

(n − 1)
=

V (D)

σ2
= χ2

normalized (11)

An estimate of the error on χ2
normalized due to the use of different sample sizes nw and

m is given as
√

σ2
F .

=⇒ Goodness of F it = χ2
normalized ±

√

σ2
F (12)

2Ref : http://mathworld.wolfram.com/F-Distribution.html
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