EVLA Planning Workshop

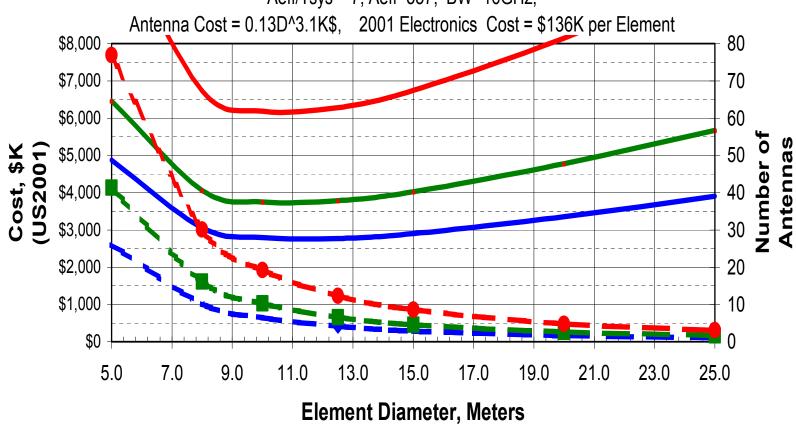
NRAO, Socorro, NM August 23, 2001

NMA Antenna and Receiver Concepts

Sander Weinreb, Caltech/JPL sweinreb@caltech.edu

- 1. Station Cost Equation
- 2. Hydroformed Antennas
- 3. Wideband Receivers
- 4. Suggested Technology Developments

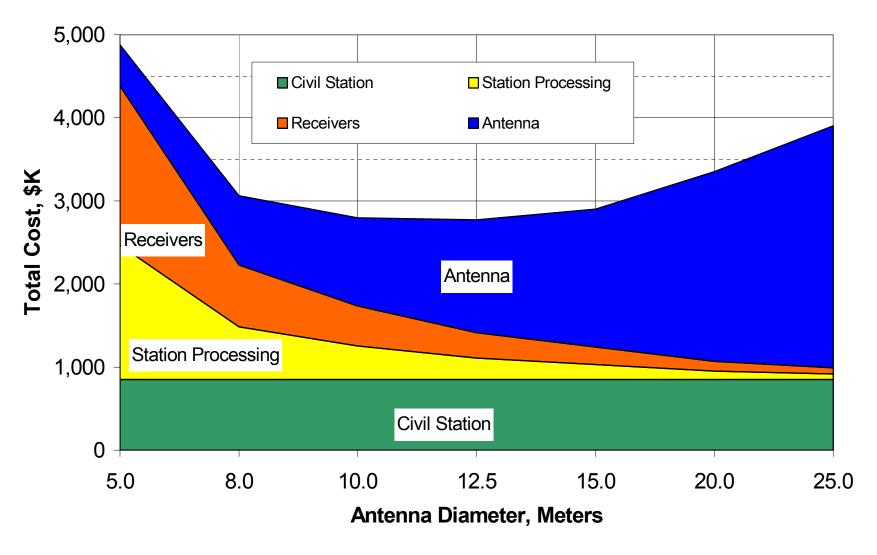
Cost Equation Spreadsheet – See A Cost Equation for the SKA, Daddario and Weinreb, for cost models and further explanation. http://www.skatelescope.org/skaberkeley/

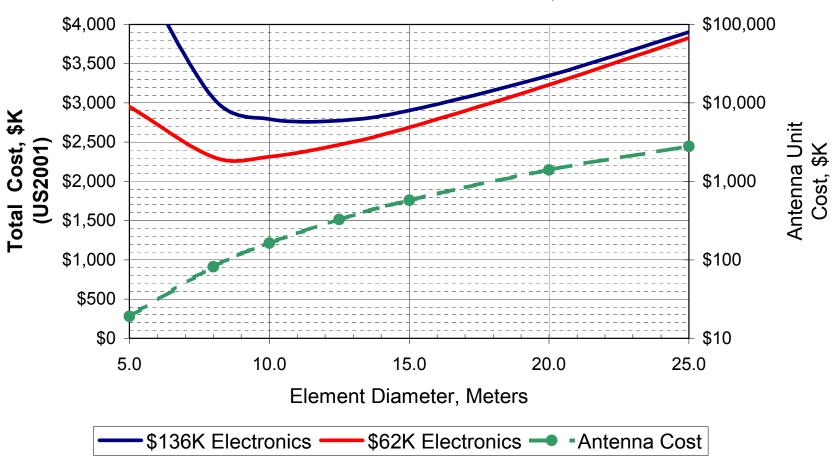

File: eVLAcosteq1.xls

eVLA2 Cost Estimates August 19, 2001

Antonia Diameter, Meters 5.0 8.0 10.0 12.5 15.0 20.0 20.0 20.0 Formation Arry Parmeters Arry Parmeters	l Inite	s K\$US(2001), meters, GHz	1 110. (evLAcoste	41.XIO				
Parameter	Office		5.0	8.0	10.0	12.5	15.0	20.0	25.0
Cat Station amenian cost, NerCa 498 832 1,083 1,399 1,081 1,399 1,391 1,39	Parameter								
Catt Station america cost, NerCa	C								
Catt Station receiver cost, NerCe 1,913 747 478 306 213 120 77	Cat					•			
Cont Total visition Total visition					•				
Cost Total covin costs at stations, Ne You Sept Se			_						
Total station cost, elements + combining electronics 3,263 2,430 2,392 2,516 2,724 3,249 3,840 No Total colorement cost, and elements + processing 99 156 237 400 649 1477 2378 No Number of stations in array 1 1 1 1 1 1 1 1 1									
Total element cost, antenna + receivers + processing 93 156 237 400 649 1477 2876 Ns Number of stations in array 1		,							
Ne Number of leatinings prestation 1									
Number of elements per station									
Deq									
Total number of elements, N = Ns*Ne									
A Effective area of array, A=N*Ae									
M		,							
Computed Figure of Mert. M = ATsys		 							
Type									
Processed total continuum bandwidth		· · ·							
Regit Antenna Francisco Roy 1									
Minimum cost ratio, Ropt = 1 / (X / 2 - 1) 1.8 1.9 1									
D Physical diameter of element (noters) 5.0 8.0 10.0 12.5 15.0 20.0 25.0									
Description	Ropt		1.8	1.8	1.8	1.8	1.8	1.8	1.8
Ap Physical area of element, Ap = 0.785°D² 20 50 79 123 177 314 491* Ef Aperature efficiency 0.70 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Ef Aperature efficiency		, ,							
Ae Effective area of element. Ae=Ap⁻Ef 14 35 5 5 86 124 220 343 Tant Anthena noise temperature, Tant = 10 +41(F/10) 30 30 30 30 30 30 30 30 30 30 30 30 30									
Tant	Ef		0.70	0.70	0.70	0.70	0.70	0.70	0.70
Cos Cost per station, Cs = Cso + Ne¹(Ca+Ce) 3.299 2.429 2.391 2.515 2.723 3.249 3.840 Cos Fixed cost per antenna. Ca = Ka¹CYX 19 82 164 327 575 1.403 2.803 Ka Antenna cost cost content 0.13 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Case Fixed cost per station, land, civil, bunker, cables 850	Tant	Antenna noise temperature, Tant = 10 +4*(F/10)	30	30	30	30	30	30	30
Cast per antenna, Ca = Ka*D°X 19 82 164 327 575 1,403 2,803 Ka Antenna cost coefficient, 0.13 0.14 14 4 4 4 4 4 4 4 4 4 4 4	Cs	Cost per station, Cs =Cso + Ne*(Ca+Ce)	3,259	2,429	2,391	2,515	2,723	3,249	3,840
Antenna cost coefficient, 0.13 0.15	Cso	Fixed cost per station, land, civil, bunker, cables	850	850	850	850	850	850	850
Antenna cost exponent	Ca	Cost per antenna, Ca = Ka*D^X	19	82	164	327	575	1,403	2,803
Antenna cost per square meter physical area, K\$/m^2 0.973 1.631 2.085 2.685 3.257 4.469 5.712	Ka	Antenna cost coefficient,	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Antenna cost per square meter physical area, K\$/m^2 0.973 1.631 2.085 2.685 3.257 4.469 5.712	X	Antenna cost exponent	3.1	3.1	3.1	3.1	3.1	3.1	3.1
Receiver Parameters	Csm	Antenna cost per square meter physical area,K\$/m^2	0.973	1.631	2.085	2.665	3.257	4.469	
Tin									
Tin	Tsys	Tsys = Tln +Tant	51	51	51	51	51	51	51
Physical temperature of LNA		Tin = Kin*F+1	21	21	21	21	21	21	21
Physical temperature of LNA					0.40	0.40			
Frequency for system temperature specification 50 50 50 50 50 50 50 5									
Ce Receiver cost per antenna, Goal 73.6 73.			50						
Ce Ce Cd Nbn*(Cfd 42* Cln) + Clo+Cif 73.6									
Coling cost per antenna 25.0 25									
Number of frequency bands 3 3 3 3 3 3 3 3 3									
Cfd Average dual-polariz feed cost 4.0 1.0 1.0 1.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 3									
Clin									
Clo									
Cif Dual F cost, Cif = 2* (Cifo+Kif*B/2) 3.6 3.0 3.0 3.0 3.0									
Cife Fixed IF cost per GHz of bandwidth 1.0 0.05 0.00 8.00									
No.									
Signal Transmission Parameters Signal Transmission Parameters Signal Friber transceiver cost, Cik = Kik*B S.00									
Clk Fiber transceiver cost, Clk = Klk*B 8.00	13.1		0.00	0.00	0.00	0.00	0.00	0.00	0.00
Rilk	CIL		8.00	8.00	8.00	8.00	8.00	8.00	8.00
Cfb Fiber installed cost, per fiber per km 2									
Signal Processing Parameters (FX architecture assumed for correlator)(Bandwidth shared among beams) Cdig Digitization Cdig = (a1*(B/Kch)^e+a2) * Kch 34.00		1							
Cdig Digitization Cdig = (a1*(B/Kch)^e+a2) * Kch 34.00	CID								
Cdig Digitization Cdig = (a1*(B/Kch)^e+a2) * Kch 34.00 <td></td> <td></td> <td>l amana haar</td> <td>ma)</td> <td></td> <td></td> <td></td> <td></td> <td></td>			l amana haar	ma)					
a1 _Digitization coefficient 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 2.00 2.	Cd:-				24.00	24.00	24.00	24.00	24.00
e Digitization exponent 2.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
a2 Digitization constant 0.50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Kch _Number of separately digitized channels 4 9 10.0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.12 0.72<									
Ctre Transmission, el to stn ctr (Klk*B + Le*Cfb) 16.20 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Le _Average distance, element to station center 0.10<									
Ctrack Tracking, elements Ctrack = (d*B + f*Nbeams) 11.92 0.72 0.72 0.72 0.72		, , , , , , , , , , , , , , , , , , , ,							
d _Tracking coefficient (per GHz) 0.72 <									
f _Tracking constant 0.10 0.010 0.0									
Nbeams Beams per station 4									
Cpe Element processing cost = Cdig+Ctre+Ctrack 62.12	-						0.10		
Csum Beam summation cost, c*B*(Ne-1) 4.0 1.5 0.9 0.5 0.3 0.1 0.0 c _Summation coefficient 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010									
c _Summation coefficient 0.010 0.010 0.010 0.010 0.010 0.010 0.010	Сре								
	Csum								
Cps Station processing cost = Cpe*Ne + Csum 1,618 632 404 259 180 101 65	С	I 			0.010			0.010	
	Cps	Station processing cost = Cpe*Ne + Csum	1,618	632	404	259	180	101	65

EVLA2 Station Cost vs Antenna Diameter for 3 Cooling Temperatures

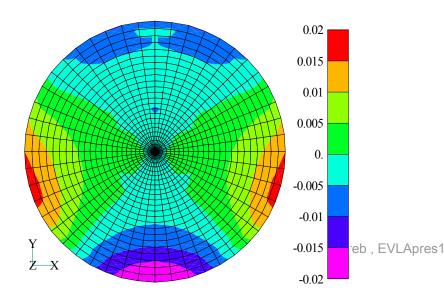

Aeff/Tsys = 7, Aeff=357, BW=16GHz,

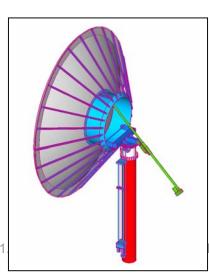

EVLA Station Cost by Subsystem vs Antenna Diameter

Aeff/Tsys = 7, Aeff=357, Tsys=51K, BW=16GHz, 15K Cryogenics Antenna Cost = 0.13D^3.1 K\$, 2001 Electronics Cost = \$136K per Element

EVLA Station Cost vs Antenna Diameter Compares Current and Projected (2007) Electronics Costs

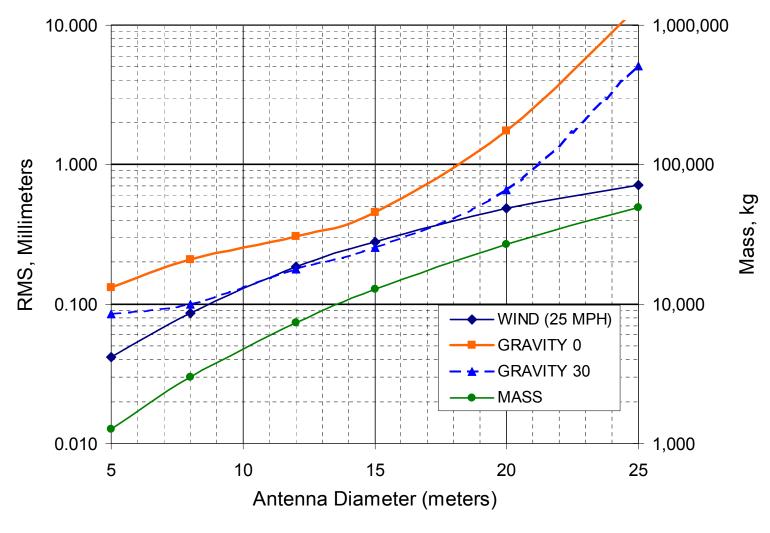
All for 15K cryogenics, 16GHz BW, A/T = 357 Antenna Cost = 0.13 D^3.1 \$K


Hydroformed Aluminum Antennas

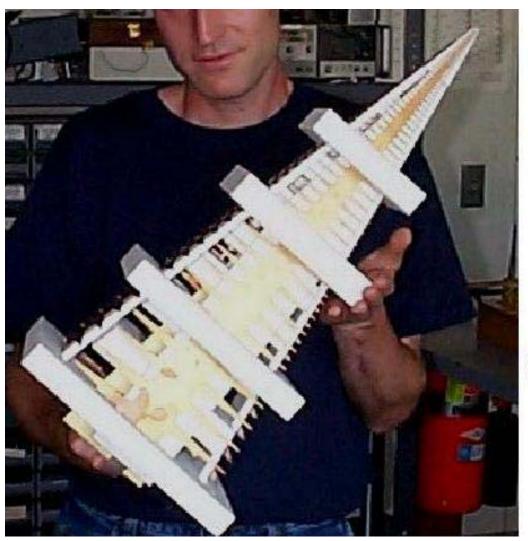

Hydroforming is a process of using a fluid or gas at very high pressure to force aluminum sheet to conform to a mold. The result is a stiff, accurate, and low cost reflector.

JPL has performed a structural analysis of 5m and 8m hydroformed reflectors manufactured by www.anderseninc.com and has found that the wind and gravitational distortions would allow operation at frequencies as high as 100 GHz.

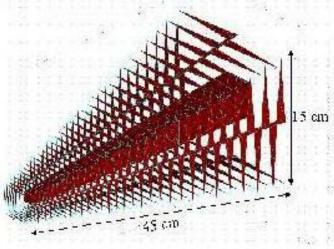
Example	Antenna Diameter	Cost per Antenna	Cost per m ²	Cost per km ²
New 70m DSN antenna	70m	\$100M	\$40.8K	\$40.8B
25m VLBA antenna	25m	\$3M	\$9.6K	\$9.6B
6m ATA antenna	6m	\$30K	\$1.7K	\$1.7B
Target SKA cost	10m	\$30K	\$600	\$0.6B
Hydroformed DBSTV antenna	4m	\$2.8K	\$350	\$0.35B
Aluminum, 3mm thick sheet	Any	NA	\$30	\$.03B



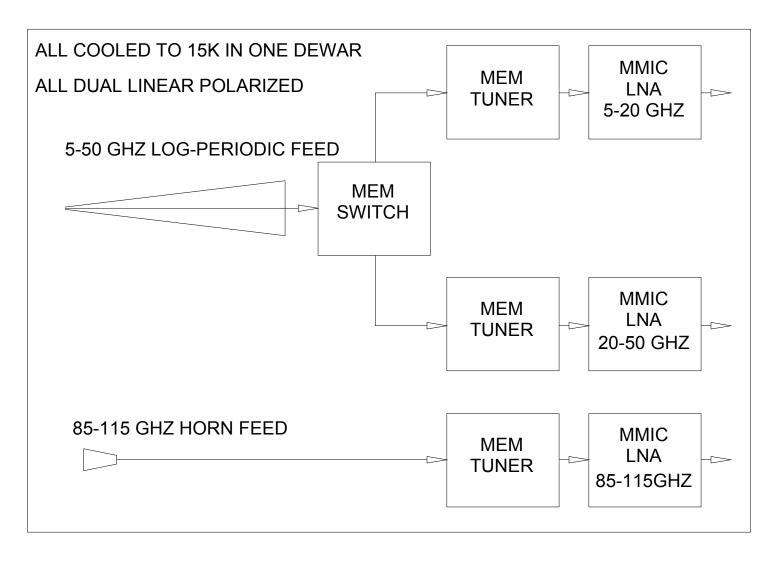
JPL/Swales Finite-Element CAD Analysis of Hydroformed Shells

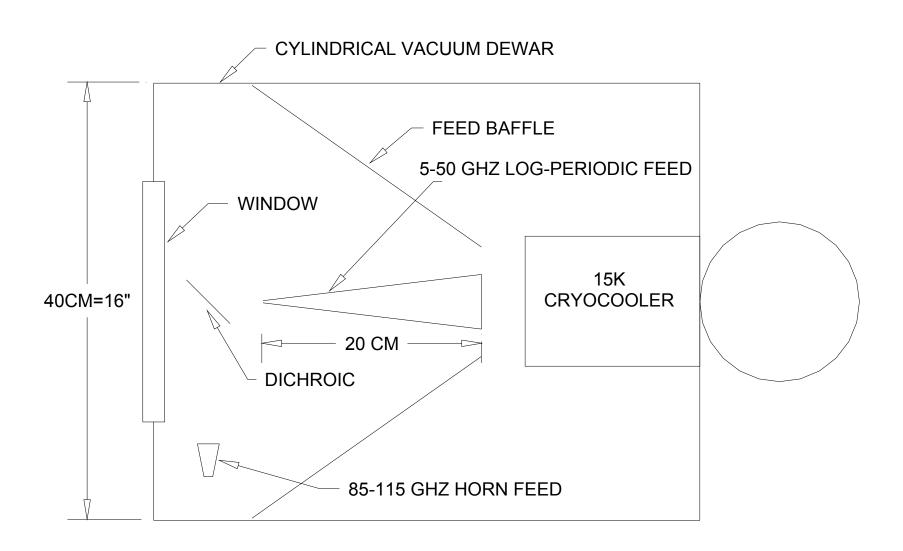

(0.1mm RMS is Required for an Efficient 100 GHz Antenna)

RMS Deformation Due to Wind and Gravity as a Function of Antenna Diameter for Hydroformed Shell of 3mm Thickness



0.5 to 11 GHz Dual-Polarized Feed Developed by SETI/UCB for the ATA

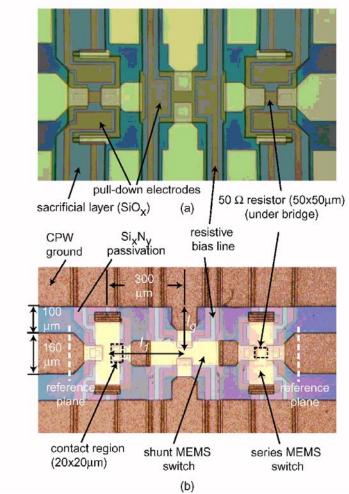

Efficiency > 60% expected over entire frequency range


Zig Zag Log Periodic Feed

5-115 GHZ RECEIVER BLOCK DIAGRAM

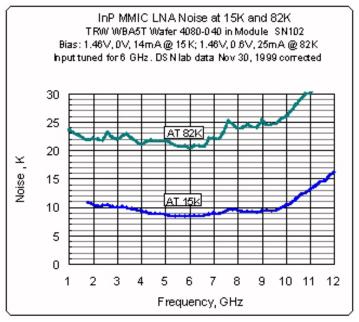
5-115 GHZ CRYOGENIC RECEIVER LAYOUT CONCEPT

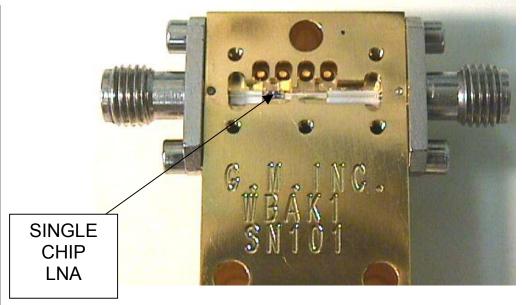
Publication (IEEE 2001 MTT Symposium) describing micro-electromechanical (MEM) microwave switches which could be integrated with cryogenic MMIC LNA's to provide very wideband receivers.

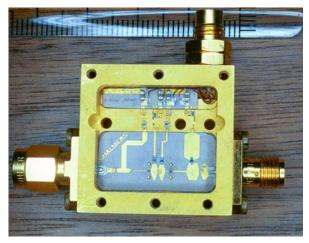

DC-26 GHz MEMS Series-Shunt Absorptive Switches

Guan-Leng Tan and Gabriel M. Rebeiz

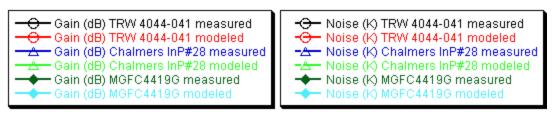
EECS Department, The University of Michigan, Ann Arbor, MI 48109-2122 gtan@umich.edu, rebeiz@umich.edu

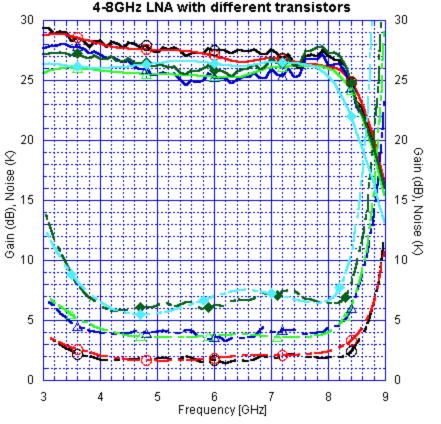

Abstract The design and performance of a wide-band coplanar waveguide (CPW) DC-26 GHz MEMS absorptive switch on silicon substrate is presented. The absorptive switch utilizes novel DC-contact series and shunt fixed-fixed beam MEMS switches with 'dimples' at the contact area for improved contact resistance. An insertion loss of 0.5 dB or better is achieved from DC-26 GHz. The isolation is -40 dB at 5 GHz, -35 dB at 10 GHz and -25 dB at 26 GHz. These switches are useful in applications where good return loss is required in the isolation state.


The wideband absorptive switch is designed using two MEMS DC-contact series switches and an in-line shunt DC-contact switch. A 50 Ω tantalum nitride resistor is connected across the gap of each series switch. The resistor is shorted when the switch is actuated, providing a low-loss path from the input to output ports. The switches are cascaded together using short lengths of transmission lines, resulting in a configuration shown in Fig. 1, with the shunt switch placed between the two series switches.


Low-Noise Amplifiers Under Development at Caltech and JPL

Frequency Range, GHz	Application	Noise
.5-11	ATA	23K @ 80K now, 15K later
4-12	ALMA IF	4K @ 4K, good input match
8-20	SIS IF Amplifer	10K @ 4K, good input match
1-60	NASA Atmospheric Sensor	400K @ 300K, 40K @ 15K
90-110	Planck, Cosmic Background	35K @ 15K
100-140	Atmospheric Sensor	600K @ 300K
170-210	Atmospheric Sensor	1500K @ 300K





Chalmers 4-8 GHz Cryogenic Low Noise Amplifier

World record 2K noise temperature, measured in 4 laboratories, achieved with TRW 0.1um InP HEMT

Suggested Technology Developments for EVLA2

- 1. **Antenna Cost Reduction** Investigate methods of reducing costs for antennas in the 10 to 25 meter range including reflector manufacture, drive systems, and optics.
- 2. **Wideband Feed Design** Scale the ATA 0.5 to 11 GHz feed to 2.5 to 55 GHz and investigate integration into a cryogenic dewar. Also consider a 0.3 to 6 GHz version of the feed for prime focus use. Study efficiency optimization and optimum subreflector optics for wideband feeds.
- 3. **Wideband Receivers** Design and test very wideband cryogenic low-noise amplifiers. Consider MEM switching and tuning.
- 4. **Cryogenic Life-Cycle Cost Reduction** Evaluate and stimulate development of lower cost, longer life, cryocoolers including possibility of 60K operation for receivers 1 to 6 GHz range.
- 5. **Wideband Digitization Design** Investigate components to reduce costs for 8 GHz bandwidth digitization and optical transmission.