Future Ideas for Low Frequencies at the VLA (and in New Mexico)

Namir Kassim Naval Research Laboratory

Background & Objectives

- Success of 74 MHz VLA demonstrates that modest investment of resources can result in significant progress in low frequency astronomy
- In light of recently awarded funding from NRL to pursue basic research in radio astronomy we are considering a modest program to gradually expand the performance of the VLA at low frequencies by utilizing mainly existing NRAO infrastructure in NM
 - This will also help develop and exercise new technology as part of NRL's responsibilities to the LOFAR project
- Philosophy institute technical improvements:
 - without adversely impacting VLA/VLBA operations
 - so that they efficiently translate into concrete scientific enhancements of the instrument and can be readily realized by a growing user community

Background of Low Frequency Radio Astronomy: Mired in the Dark Ages

- Radio astronomy began at low frequencies: $v \sim 20 \text{ MHz}$
- Until recently, ionospheric effects severely limited angular resolution & sensitivity
- Remains one of the most poorly explored regions of the EM spectrum despite great scientific potential

Low Angular Resolution: Limits Sensitivity Due to Confusion

7/26/01

EVLA-II - Low Frequencies

4

74 MHz VLA SYSTEM

- 74 MHz VLA imaging system implemented 1993–1997
- Demonstrated **self-calibration** can remove ionospheric effects
 - Over-determined problem manageable with high N array & initial model
 - Works well at VLA (N=27)
 - Originally motivated by recognition that *phase transfer* from higher frequencies can increase coherence times and S/N rarely required
- VLA 74 MHz system is now the most powerful long wavelength interferometer in the world.

THE 74 MHz NRL-NRAO VLA SYSTEM

7/26/01

Phase Transfer: Enhancing S/N for Self-cal

- Ionospheric waves introduce rapid phase variations
 - $\sim 1^{\circ}/\text{sec}$ for A-array (35 km) VLA.
- Disrupt phase measurements and limit coherence times
- Self-calibration can
 remove them to the level
 needed for normal
 synthesis observations.

74 MHz VLA: Significant Improvement in Sensitivity and Resolution

Comparison of Low Frequency Capabilities (past vs. present) Clark Lake (30 MHz) VLA (74 MHz)

- B ~ 3 km
- $A_e \sim 3 \times 10^3 \text{ m}^2$
- θ ~ 15' (900'')
- $\sigma \sim 1 \text{ Jy}$

Enßlin et al. 1999

Results from VLA 74 MHz System

- (a,b) internal absorption in supernova remnants (a: Cas A -Kassim *et al.* 1995; b: Crab Nebula - Bietenholz *et al.* 1997)
- (c) emission from relics & clusters of galaxies (Enßlin et al. 1999, Kassim et al. 1999, 2000)
- (d,e) radio galaxies & halos (Kassim et al. 1993, Owen et al. 1999, 2000) 11

7/26/01

VLA 74 MHz: New Cluster/Relic System

A new halo-relic system in the Abell 754 cluster of galaxies recently discovered with the 74 MHz VLA

Color: ROSAT X-ray image Contours: 74 MHz VLA image

Kassim, Clarke, et al. 2001(ApJ, astro-ph/0103492)

EVLA-II - Low Frequencies

7/26/01

SNRs: Extrinsic ISM Absorption (images courtesy C. Lacey)

First example of spatially resolved freefree
absorption
towards a
Galactic SNR
(Lacey et al.
2001)

7/26/01

VLA 74 MHz: Galactic Center Absorption Holes => Synchrotron Emissivity Vectors

74 MHz Galactic Center: Preliminary D-array Image – $(\theta \sim 10')$ (courtesy Mike Nord – UNM-NRL PhD Thesis Project)

7/26/01

Possible Near Term Activities

- Some room for improvement with current VLA system
 - New calibration/imaging algorithms being explored for use with current VLA system and in anticipation of LOFAR
 - New strategies being explored with NRAO on the 4MASS project
 - 4MASS initial LOFAR calibration grid
- However, the main limitations of the present 74 MHz VLA are sensitivity and angular resolution
- Possible modest near term programs to address these:
 - Increase the available bandwidth at 74 MHz
 - Outfit PT at 74 MHz and implement 74/330 MHz PT link tests
 - Plan for a few inner VLBA 74 MHz campaigns
 - To constrain the practical limits of low frequency interferometry in anticipation of LOFAR and to do unique science

Possible Longer Term Activities

- The VLA was not designed to provide good sensitivity at these wavelengths: ε ~15%, sidelobes ~ 20dB, Tsys/Ae too high
 - It would be far better to use an array of broad-band antennas, electronically phased to act as a single dish
- We are designing a stand-alone low frequency (10-90 MHz) "station" consisting of several hundred antenna elements (for LOFAR)
- We would like to build two stations as prototypes for the low frequency part of LOFAR and use them to enhance the capabilities of the present VLA 74 MHz system
 - Station I VLA center; Station II VLA outlier (eg. A+ site)
 - Command & control systems compatible with present & future (EVLA) control systems
 - Two stations will allow us to explore LOFAR beam-forming at frequencies other than 74 MHz

SKY NOISE DOMINATED SYSTEM TEMPERATURE

Frequency	Band Name		System	Antenna	RMS (10 min)
(GHz)	approximate	letter	Temperature ₁	Efficiency ₂	Sensitivity
	wavelength	code	(K)	(%)	(mJy/beam)
0.073 - 0.0745	400 cm	4	1000-10000	20	150 ⁽³⁾
0.3 - 0.34	90 cm	Р	150-180	40	1.4 ⁽³⁾
1.3 - 1.70	20 cm	L	35	55	0.056
4.5 - 5.0	6 cm	С	45	69	0.054
8.1 - 8.8	3.6 cm	Х	35	63	0.045
14.6 - 15.3	2 cm	U	120	58	0.17
22.0 - 24.0	1.3 cm	K	150 - 180	40	0.31 ⁽⁴⁾
40.0 - 50.0	0.7 cm	Q	100 - 140	35	0.60 ⁽⁵⁾
		-			-

rms ~ T_{sys}/A_e

7/26/01

Impact of Central Station: Relaxing the finite Isoplanatic Patch assumption

- Current self-calibration assumes single ionospheric solution across full field of view (FOV)
 - Assumption valid over a much smaller region than the full FOV
 - Problems: differential refraction, image distortion, reduced sensitivity
 - Solution: selfcal solutions with angular dependence

 $\varphi_i(t) \rightarrow \varphi_i(t, \alpha, \delta)$

- Zernike polynomial phase screen correction now available prior to self-calibration
 - Non-selfcal reliant imaging code developed for 4MASS by Cotton
 - Key handicap poor S/N significant data loss except under very good ionospheric conditions

7/26/01

Breakdown of Finite Isoplanatic Patch Assumption

7/26/01

Phase Delay Screen Modeling 1D – phase structure function

Before Zernike Model

After Zernike Model

7/26/01

Phase Delay Screen Model

(Zernike polynomial models - courtesy B. Cotton, J. Condon)

Fitted model ionospheric phase Delay screen rendered as a plane in 3-D viewed from different angles.

Impact of Central Station

- Will significantly increase the power and sophistication of 74 MHz VLA calibration
 - At least 10X the sensitivity of a VLA dish will aid calibration much as a large dish helps when initially calibrating VLBI data
 - Should greatly improve efficiency of VLAFM
 - Allow us to "map out" the larger FOV of the 25 m dish and aid in determining antenna based phases with an angular dependence
 - ~100 m diameter sufficient room in central sector
 - Better calibration \rightarrow Better DR, image fidelity & sensitivity
- Useful for exploring proposed LOFAR calibration schemes which rely on a large "virtual core" of antenna elements

Outlier Station Objective Extending resolution and uv coverage

 $\delta = +20^{\circ}$

Benefits of Higher Angular Resolution

Antenna Design

٠

_

New-technology approach:

Disadvantages: impedance

matching, sensitivity, sky

"Active" Dipoles

Advantages: small

- Conventional approach: Log-Periodic Array
 - Advantages: well studied good frequency & sky coverage
 - Disadvantages: large

Station Design

- Consists of ~256-1000 broad-band wire antenna elements
- Phased array will deliver one signal which looks like the signal from a single VLA antenna (EVLA compatible)
 - Plug & play philosophy for VLA integration
 - Will serve as prototypes for LOFAR lower frequency antennas

7/26/01

High Sensitivity Station Prototype for LOFAR Low Frequency Antennas

Analogous to one VLA antenna but with >10X the sensitivity

~100 meter diameter

<u>@74MHz:</u>

VLA antenna ~ 125 m²

LWA Station $\geq 1500 \text{ m}^2$

(fractal element distribution shown here is not necessarily our favorite)

EVLA-II - Low Frequencies

Future Prospects

- The proposed near-term plans provide a significant increase in capabilities of an existing VLA system
- They also make it possible to prototype a future standalone, broad-band capability at the VLA
 - Permits eventual realization VLA SM146: "A proposal for a large, LF array located at the VLA" – Perley & Erickson, 1984
 - Partly implemented as 74 MHz system after "phase transfer" insured self-cal convergence
- Everything we now know scientifically & technically ensures that SM146 would work beautifully and be a powerful instrument for both Galactic & EG work

SM146 Concept (VLA Scientific Memorandum #146)

- Perley & Erickson concept
 - Standalone stations along VLA arms
 - VLA arm easement enough room for 100 m stations
 - Logistical issues remain how will the cows like them?
 - Might proceed with EVLA-I
- Augmented SM146
 - Addition of A+ capability
 - Might proceed with EVLA-II

SM146 CAPABILITY

Multiple, independent beams \Rightarrow speed and flexibility \Rightarrow multiple, simultaneous science programs

Relationship to LOFAR

- LOFAR is much more complex than SM146
 - It has a substantial technology development element as well as purely scientific goals
 - Larger Freq. Range (LOFAR: 10-240 MHz; SM146: 10-90 MHz))
 - Much larger bandwidth (larger than EVLA)
 - Many more stations (>100)
 - Complex configuration (log spiral)
 - MUCH more software, etc ...
- SM146 and LOFAR: parallel, mutually beneficial
 - SM146 development clearly meshes with LOFAR technical developments for low frequencies (< 100 MHz)
 - Might SM146 develop into the low frequency portion of LOFAR?
 - LOFAR site is not yet determined; there are other good candidates
 - Anything is possible
- Independent of LOFAR VLA based SM146 makes sense

KEY LOFAR SCIENCE DRIVERS

- High Redshift Universe
 - unbiased sky surveys, select highest z galaxies
 - trace galactic & intergalactic B fields, infalling shocks around clusters
 - Epoch of Reionization: search for global signature, detect and map spatial structure
- Cosmic Ray Electrons and Galactic Nonthermal Emission
 - map 3D distribution, test expected origin and acceleration in SNRs
- Bursting and Transient Universe
 - broad-band, all-sky monitoring for variable/transient sources (GRBs, etc ...)
 - search for coherent emission sources; e.g. from stars, quasars, & extra-solar planets
- Solar-Terrestrial Relationships
 - study fine-scale ionospheric structures
 - image Earth-directed CMEs (as radar receiver)
- LOFAR science plan was recommended by the NAS Astronomy Survey Committee in the new Decade Report.
- LOFAR Consortium (growing) NRL-MIT/HO-ASTRON-UT
 - Science advisory board forming with growing US University membership

Summary

- We are considering a modest, incremental program for enhancing the scientific and technical performance of an existing VLA system
 - Some of these have synergetic overlap with planned EVLA activities eg. development of a common A+ outlier site
 - Some of these satisfy NRL's responsibilities for developing new technology for LOFAR eg. low frequency antennas/stations
- If it were possible to start down this road, our philosophy would be to
 - realize these enhancements in a manner that translates to immediate scientific benefits to the low frequency user community
 - implement them with minimum impact on VLA/VLBA operations
- These plans also lay the ground work for a broad-band standalone system as described in NRAO SM146
 - It could possibly proceed in parallel with EVLA I & II