
WIDAR Correlator Backend:

Requirements,

Status,

&

Design Update

WIDAR Correlator Face-to-face Meeting — 2007–12–12, Socorro M. Pokorny



1

Requirements-1

• Stage 2 acceptance testing

Current software deployed at DRAO is sufficient.



1

Requirements-1

• Stage 2 acceptance testing

Current software deployed at DRAO is sufficient.

• Hardware/software integration testing

Possibly the following:

− backend pipeline startup, configuration and shutdown (backend pipeline M&C
interface);

− lag set assembly (requires configuration);
− pipeline processing functionality: Fourier transform, data valid normalization, etc.;

and
− BDF output.



2

Requirements-2

• OTS critical tests

All of the above, with the following possible additions:

− master node interface with test executor;
− master node applications for monitor and control of backend pipeline(s);
− auxiliary data distribution to backend pipelines (e.g., state counts);
− additional pipeline processing functionality (van Vleck correction?);
− parallel I/O (i.e., fast formatter) capability;
− staging area for BDF files; and
− master node interface with MCAF.



2

Requirements-2

• OTS critical tests

All of the above, with the following possible additions:

− master node interface with test executor;
− master node applications for monitor and control of backend pipeline(s);
− auxiliary data distribution to backend pipelines (e.g., state counts);
− additional pipeline processing functionality (van Vleck correction?);
− parallel I/O (i.e., fast formatter) capability;
− staging area for BDF files; and
− master node interface with MCAF.

• Limited observing and integration with EVLA M&C

All of the above, with the addition of

− master node interface with MCCC;
− additional capabilities for master node M&C of backend pipelines;
− additional pipeline processing functionality; and
− archive interface.



3

Pipeline (compute node) software status

• Architecture/framework complete.

• M&C interface complete.

• Needs lag set processing element implementations (and pipeline data type definitions),
including, in the short term,

− FFT element,
− normalization element,
− integration element, and
− BDF output element.

• Needs additional monitor properties and diagnostic capabilities.

• Needs improved logging capabilities.



4

Master node software status

• Interface to backend pipelines complete.

• Needs interface to test executor and MCCC.

• Needs backend applications, such as

− compute node resource allocation,
− compute node/pipeline M&C (including configuration and failover),
− auxiliary data distribution to compute nodes,
− BDF output coordination, and
− interface to MCAF (and archive?).



5

System design status

• Cluster management

Still using Rocks with good results.

• Parallel I/O

Still using Lustre; no critical tests done yet. Recent developments in the field include

− pNFS, a standardized parallel filesystem interface, which will be implemented by
Lustre and other parallel filesystems;

− Cluster File Systems (primary Lustre developer) acquired by Sun Microsystems
— Lustre code remains open source.

• High availability and failover

Investigating Heartbeat from Linux-HA project.



6

Design update: compute nodes

Backend (compute node) software has been redesigned and reimplemented since last
face-to-face meeting.

New design based on GStreamer, an open source multimedia framework. A few of the
key features of GStreamer:

• construction of arbitrary pipelines based on graph structure;
• simple construction of multi-threaded pipelines;
• lightweight data passing for high performance and low latency; and
• dynamically loaded plugins to provide pipeline elements and media types.

Key concepts of GStreamer:

• element
• pad
• capabilities



7

GStreamer key concepts

element pad

A pad's capabilities 
characterize the data that 

it can handle.

Pads must negotiate an 
agreement on a common 

capability in order to 
connect.

data flow



8

Pipeline design features

• Separate input stage and lag set processing stages.

• Lag set processing stage management: startup, shutdown, message/event/error
handling, process restarts.

• Supports multiple standby configurations and one active configuration.

• GStreamer-derived features: element properties, pipeline message bus, and pipeline
events.

• Pipeline M&C socket interface (datagram-oriented Unix domain or UDP/IP); pipeline
essentially runs as a daemon or server.

• Two client programs: wcbe_console and pipelinefs.



9

Master node design

The only software design for the master node that is complete is the master node/pipeline
interface, to be used by applications running on the master node to interface with compute
node pipelines.

Two options were available:
1. use socket interface (i.e., message protocol), or
2. hide message protocol under another layer.



9

Master node design

The only software design for the master node that is complete is the master node/pipeline
interface, to be used by applications running on the master node to interface with compute
node pipelines.

Two options were available:
1. use socket interface (i.e., message protocol), or
2. hide message protocol under another layer.

pipelinefs is an implementation of option 2, using a REST-like style, that is immediately
usable by any programming language that can read from and write to files — including
shell scripts — without requiring additional software.



10

pipelinefs

What is it?

pipelinefs exposes the internal state of pipelines as directory entries in a filesystem.
States can be monitored by reading from directory entries, and can be changed by
writing to directory entries.


