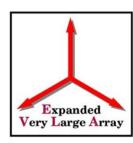
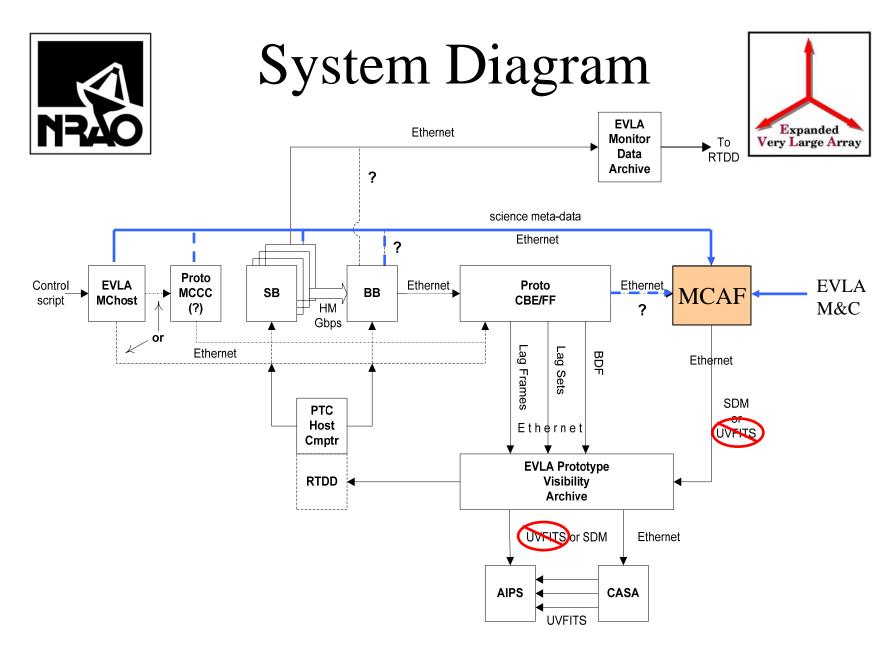

MCAF

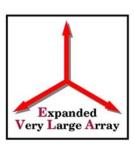
(Metadata Capture and Formatting)

Rich Moeser


Outline


- MCAF overview
- System diagram
- Timeline
- Status
- Design
- Possible Reuse (from IDCAF or ALMA)
- SDM
- Deployment
- Summary/Questions

MCAF



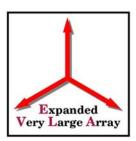
- MCAF was originally named DCAF
 - The name was changed to emphasize that it's "meta" data that's being captured (as opposed to visibility or monitor data).
- MCAF's primary responsibilities are:
 - To collect science metadata from the EVLA system and the correlator.
 - Combine and reorganize the data
 - And write the data in ESDM (EVLA Science Data Model) format
- It is the successor of IDCAF (Interim Data Capture and Formatting)
 - This is the data capture process currently used by the EVLA system.
 - Required for the retirement of the Modcomp computers.
 - Writes the data in VLA export format to the VLA archive.
- Differences between IDCAF and MCAF
 - IDCAF = EMCS + VLA Correlator + VLA Export Format
 - MCAF = EMCS + WIDAR PTC + ESDM Format

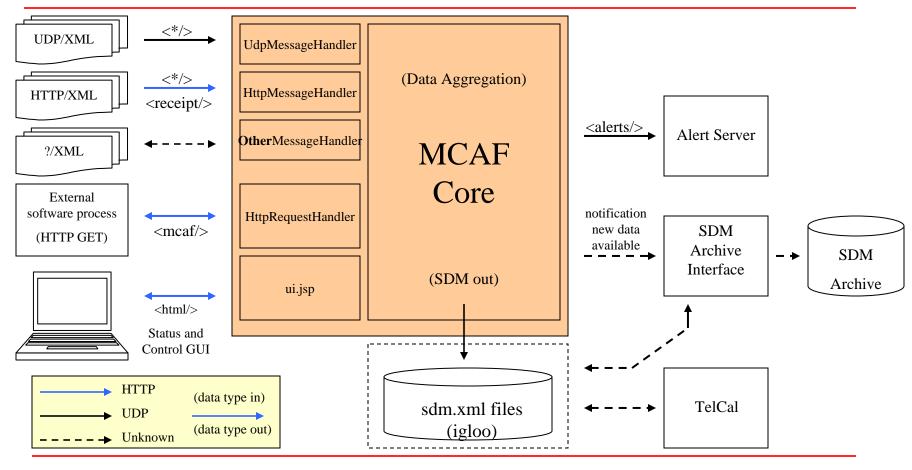
Phases/Timeline


- Feb 2008
 - Detailed design complete
- Mar 2008
 - Schema definitions for all data going into MCAF
- May (early) 2008
 - Writing the minimal SDM (= mandatory tables)
- July (mid) 2008
 - Ready to support PTC tests
 - Writing minimal SDM + other required tables (if any)
- Q1 2009
 - Support for simple observing with WIDAR
 - "commissioning basic observing modes"
- O4 2009
 - Writing full-blown SDM, supporting all tables for EVLA/WIDAR
 - "commissioning advanced observing modes"

ALMA deliverables: Q1 2008

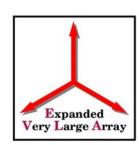
- Typed XML schema
- Modifications to code generator to eliminate ACS/CORBA dependencies


Status



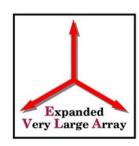
- Currently in the early stages of design and prototype.
- Focus has been mostly on infrastructure
 - -Data collection
 - -SDM handling (SDM to Java binding)
 - -Communications

MCAF design



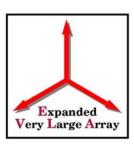
Correlator f2f Meeting

MCAF Input



- This includes all data required to build the ESDM
- Data that is either sent to MCAF or data that it retrieves on its own.
- EVLA Data Providers
 - -Executor
 - -CMP
 - -MIBs
 - -Alert Server or Flagger
 - (depends on internal or external flagging)
 - -Dynamic Scheduler (?)
 - -TelCal(?)
 - -Others?

- Correlator Data Providers
 - -CBE/FF (?)
 - -Station Boards (?)
 - -Baseline Boards (?)
 - -MCCC (VCI) (?)
 - -Others?

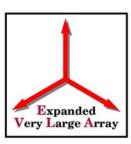

MCAF Output

- Writes SDM output files (to a staging disk)
- Sends alerts to the Alert Server
- Data to TelCal (the SDM files)
- Archive notification (?)

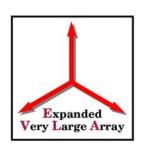
Communications

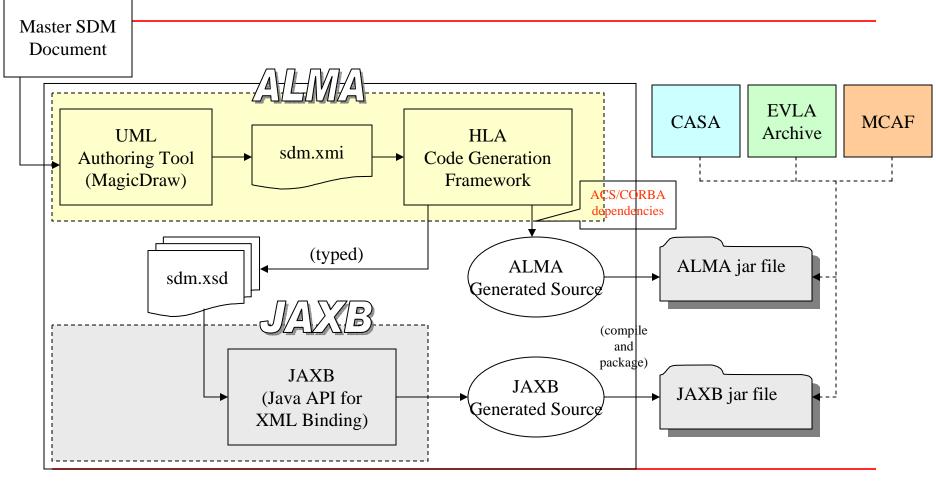
- Sending data to MCAF
 - -UDP Multicasts containing XML documents
 - -HTTP POSTs containing XML documents
 - -Unknown data types received by MCAF will be logged and dropped.
- MCAF fetching data
 - -What data will MCAF need to collect on its own?
 - -If MCAF needs to get data from the SBs will it need to open a connection to each one?
 - -What is the communications protocol?

- Access to MCAF information from clients (Java, python, ...)
 - -HTTP interface to retrieve basic status information, e.g. health, number of packets received and processed, errors, start date and time, etc
 - -Data will be an XML <mcaf> document back to the client.
- Browser access...
 - -A simple JSP (Java Server Pages) will display MCAF status and possibly present control options (shutdown, restart, etc).

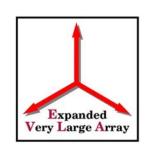

Possible Reuse? (from IDCAF or ALMA)

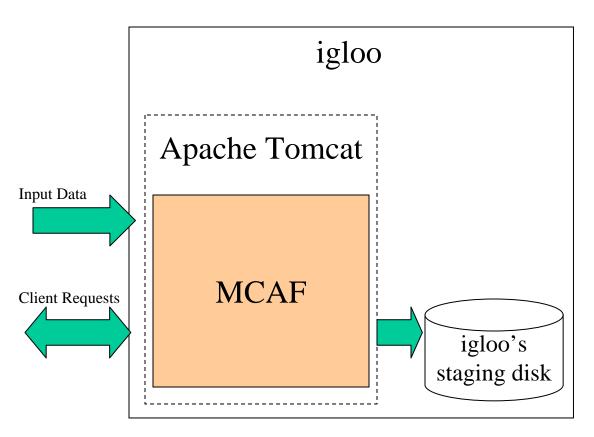
- IDCAF is written in C, MCAF will be written in Java.
 - No chance of reuse there
 - Possibility for reusing parts of the design
- The infrastructure for sending data to IDCAF exists, e.g. in the Executor, so there's a good chance the existing XML schema can be used and simply extended.
- There's a very good chance of being able to use ALMA's code for reading and writing SDM.


SDM



- The SDM is a collection of ~40 "tables" containing "rows" of data of a known type.
- The "minimal" SDM will create and write the "mandatory" tables of the SDM.
- The "mandatory" tables:
 - Main, AlmaCorrelatorMode, Antenna, ConfigDescription, DataDescription, Feed, Field, Polarization, Processor, Scan, Source, SpectralWindow, State, SubScan
- The remainder of the table are considered "optional" tables:
 - Beam, CalDevice, CalAtmosphere, Doppler, Ephemeris, ExecBlock, Focus, FocusModel, GainTracking, History, Observation, Pointing, PointingModel, Receiver, SBSummary, Seeing, SourceParameter, SquareLawDetector, Station, SwitchCycle, TotalPowerData, WVMcal, Weather.
- Are the mandatory tables sufficient for the PTC tests? If not, what else is needed?


SDM Java Binding Options



MCAF Deployment for the PTC

- MCAF will run on the machine *igloo* (or its replacement) out at the site.
- It will be packaged as a ".war" file and deployed to a running instance of Apache Tomcat.
- If the system goes down for whatever reason Tomcat will automatically start and launch all of the applications in its container, including MCAF.

Summary/Questions

Summary

- Still in the early stages of MCAF
- A detailed examination is needed to find out where all of the data required by the SDM will originate
- A first cut that writes minimal SDM will be ready by May
- There's a pretty good chance we'll be able to use some of ALMA's software.
- Determine whether or not flagging should be built into MCAF or if it should be a standalone external process.

Questions

- Does MCAF gather anything directly from the CBE/FF/SBs/BBs/MCCC?
 - What is the communications protocol?
- Is the "minimal" SDM sufficient for PTC testing?
- The plan is to have MCAF writing SDM in May. Is that acceptable?