

EVLA Prototype Correlator (PTC) P. Dewdney

Herzberg Institute of Astrophysics National Research Council Canada

On-the-Sky Testing

- Primary purpose DRAO led (Critical OTS Tests).
 - Verify Hardware so that production phase can proceed.
 - Check for HST-style bloopers.
- Secondary Purpose NRAO led.
 - Integration of a "small" system with EVLA software.
 - Testing of such, and further checks of software through-put.
- Tertiary Purpose NRAO led.
 - Test wide-band observing.
 - Develop wide-band calibration techniques.
- Quaternary Purpose NRAO led.
 - Look at wide-band RFI environment.
 - Develop evasion/expurgation measures.
- Quinary Purpose NRAO led.
 - Carry out early observations where possible.

Correlator System Testing Summary

- Stage 1/2: Prototyping and testing.
- Stage 3 Prototype testing
 - 16SB/16BB in racks will form "testable unit sub-systems", loaded in a way that is very similar to final rack configuration.
 - Subjected to as many tests as possible in lab environment.
 - When complete, the OTS system will be shipped to Socorro.
- On-the-Sky (OTS) 10-antenna.
 - Principal DRAO purpose is to verify hardware in-system.
 - Check for HST-style bloopers.
 - Long integration times available.
 - Already done for correlator chips.
 - Could be done in the lab, in principle.
- Production Testing
 - Both correlator chips and finished circuit boards will be subjected to temperature cycling and subsequent testing/burn-in before leaving DRAO.
 - Methodology is worked out, but precise details are not.
 - Testing hardware and equipment has been purchased or developed.

Critical OTS Tests

- Nature of decision
 - Is the fault that you just detected possibly attributable to the H/W and not FW or SW?
 - Most testing will have been done in Penticton.
 - Most bugs will not be the correlator.
 - But ... if there is a correlator bug, it will be exist forever.
 - Answer is real-time monitoring of the OTS tests.
- Michael/Brent's list (4 months?)
 - Basic setup/connectivity checks
 - Delay tracking
 - Noise switching
 - First fringes
 - Strong source, known flux density (check corr'n coeff)
 - Deep integration on mostly blank field (corr offsets and other systematics)
 - Deep spectral line integration (bandpass stability)
 - Recirculation on narrow line(s)
 - Sub-band stitching (comes "for free")

National Research CouncilConseil national de recherchesCanadaCanada

Major Question

- Should we skip Critical OTS testing?
- If we "overkill" the OTS testing before production is triggered, does that slow down science operations?
 - i.e. How much does the correlator hardware production schedule affect the overall EVLA schedule?

End