
Correlator Backend
&

Fast Formatter

Status, Design, Plans, and Schedule



Software engineering progress

Development tools

old CBE new CBE

no version control CVS
ad hoc Makefiles GNU autotools

no testing framework(s) dejagnu, check (with gcov)
no profiling tool(s) oprofile (gprof)



Software engineering progress

Development tools

old CBE new CBE

no version control CVS
ad hoc Makefiles GNU autotools

no testing framework(s) dejagnu, check (with gcov)
no profiling tool(s) oprofile (gprof)

Development standards

old CBE new CBE

low modularity high modularity
little--known libraries widely--known (standard) libraries

single, documented test procedure automated system and unit tests



Software engineering progress

Development tools

old CBE new CBE

no version control CVS
ad hoc Makefiles GNU autotools

no testing framework(s) dejagnu, check (with gcov)
no profiling tool(s) oprofile (gprof)

Development standards

old CBE new CBE

low modularity high modularity
little--known libraries widely--known (standard) libraries

single, documented test procedure automated system and unit tests

Library usage

CWP, SU, PVM, glib, popt, fftw, cblas, atlas, check



Current performance

Test environment

• Two, dual 3 GHz processor machines connected by gigabit Ethernet

• Lag sets consisting of a single lag frame

• CBE data processing comprising (time-domain) windowing, Fourier transform,
integration and ASCII file output

• Simulator used for frame generation



Current performance

Test environment

• Two, dual 3 GHz processor machines connected by gigabit Ethernet

• Lag sets consisting of a single lag frame

• CBE data processing comprising (time-domain) windowing, Fourier transform,
integration and ASCII file output

• Simulator used for frame generation

Results

• Achieved frames rates of up to approximately 106,000 frames per second (i.e.,
∼ 94% of gigabit ethernet total bandwidth.)

• Processor utilization

processes utilization
input/sorter ∼ 95%
lagset_proc ∼ 45%



Design changes

Significant design changes

• Elimination of lag frame store

• Integration of input and sorter processes

• One--to--one relation of lag set processing processes to lag sets

• Flat (non--hierarchical) indexing of lag frames to lag sets

• Direct lag frame indexing on encoded header words



Elimination of lag frame store

LF
S LSS



Elimination of lag frame store

LF
S LSS

Disadvantages of LFS

• Block structure adds processing latency
• Referenced data can change



Elimination of lag frame store

LF
S LSS

Disadvantages of LFS

• Block structure adds processing latency
• Referenced data can change

Advantages of LFS elimination

• No added latency in construction of lag sets
• No lag frame references
• Elimination of LFS requires on--the--fly sorting of lag frames into lag sets,

inspiring the integration of the input and sorter processes.



Lag set processes vs. lag sets

Original design

lagset_proc
lag set store



Lag set processes vs. lag sets

Original design

lagset_proc
lag set store

New design

lagset_proc
lagset_proc
lagset_proc
lagset_proc

lag set sequences



Lag set sequences and lagset_proc

Benefits of new design

• Structure of lag set sequences is simpler than structure of lag set store.
• Lag set processing program is simplified.
• Shared memory accessed by each lagset_proc process isolated to one lag set

sequence.
• Process isolation for processing of each lag set sequence.
• Lag set sequences are free of structure imposed by lag set store.



Lag set sequences and lagset_proc

Benefits of new design

• Structure of lag set sequences is simpler than structure of lag set store.
• Lag set processing program is simplified.
• Shared memory accessed by each lagset_proc process isolated to one lag set

sequence.
• Process isolation for processing of each lag set sequence.
• Lag set sequences are free of structure imposed by lag set store.

Lag set sequence structure

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

tiN tiN+1 tiN+2

· · ·
tiN+N−1

• Each element of a lag set sequence contains a partially decoded lag frame.
• Lag sets in the lag set sequence are indexed by time.
• Lag frames within a lag set are indexed by an offset.



Lag frame sorting: fields

Sort, v. tr.

1. To map a lag frame to a lag set sequence and frame offset.



Lag frame sorting: fields

Sort, v. tr.

1. To map a lag frame to a lag set sequence and frame offset.

Start_BlockY NBlocks nlags CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

STATUS_BITS FRAME_COUNT RECIRC_BLK-Y RECIRC_BLK-X

TIMESTAMP-0

TIMESTAMP-1

DVCOUNT-Center

DVCOUNT-Edge

Board S/N LTA Bin #

Lag0-In_phase accumulator

Lag0-Quadrature accumulator

Lag1-In_phase accumulator

Lag1-Quadrature accumulator
...

Lag127-In_phase accumulator

Lag127-Quadrature accumulator

LTA data frame



Lag frame sorting: fields

Sort, v. tr.

1. To map a lag frame to a lag set sequence and frame offset.

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

...

Lag frame sorting fields



Lag frame sorting: mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #



Lag frame sorting: mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

Mapping of header words to (lag set sequence, frame offset) pair implemented using a
hash table.

• Avoids wasted memory required by an array
• Unstructured
• Speed is not a significant factor
• Mapping can be done without decoding the header fields



Lag frame sorting: mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

Mapping of header words to (lag set sequence, frame offset) pair implemented using a
hash table.

• Avoids wasted memory required by an array
• Unstructured
• Speed is not a significant factor
• Mapping can be done without decoding the header fields

Mapping of lag frame to lag set within a lag set sequence is done by simple timestamp--
based indexing of the lag set sequence array.



Fast formatter description

Review

• All data for one baseline (including all subbands, bins, and polarizations) are
sent to one backend cluster compute node.
− scalability?

• Final data product comprises all backend output data into a single file.



Fast formatter description

Review

• All data for one baseline (including all subbands, bins, and polarizations) are
sent to one backend cluster compute node.
− scalability?

• Final data product comprises all backend output data into a single file.

Role of fast formatter

• Produce correlator output in binary data format (single file per sub--scan?).
• Binary data format only—no SDM.



ALMA fast formatter model



ALMA fast formatter model

Communication channels based on CORBA and/or ACS.



Proposed EVLA fast formatter model

baseline
boards



Proposed EVLA fast formatter description

The proposed fast formatter is nothing more than a method by which to write complete
files in the required binary data format.

On--line storage for CBE satisfies several requirements

• output data management (3.2.2.18)
The CBE shall store formatted output data records in a memory buffer with
backup disk buffering.

• storage (3.3.2.5)
The CBE system shall have sufficient disk storage with sufficient access speed
to meet short duration correlator bursting demands plus a standby reserve to
hold at least 12 hours of output data.

• scalability (3.7.x)



Proposed EVLA fast formatter description

The proposed fast formatter is nothing more than a method by which to write complete
files in the required binary data format.

On--line storage for CBE satisfies several requirements

• output data management (3.2.2.18)
The CBE shall store formatted output data records in a memory buffer with
backup disk buffering.

• storage (3.3.2.5)
The CBE system shall have sufficient disk storage with sufficient access speed
to meet short duration correlator bursting demands plus a standby reserve to
hold at least 12 hours of output data.

• scalability (3.7.x)

If access to the on--line storage is confined to the CBE, the fast formatter process simply
transfers files from the storage area to somewhere else.



Proposed EVLA fast formatter description

The proposed fast formatter is nothing more than a method by which to write complete
files in the required binary data format.

On--line storage for CBE satisfies several requirements

• output data management (3.2.2.18)
The CBE shall store formatted output data records in a memory buffer with
backup disk buffering.

• storage (3.3.2.5)
The CBE system shall have sufficient disk storage with sufficient access speed
to meet short duration correlator bursting demands plus a standby reserve to
hold at least 12 hours of output data.

• scalability (3.7.x)

If access to the on--line storage is confined to the CBE, the fast formatter process simply
transfers files from the storage area to somewhere else.

If the on--line storage is accessible to other subsystems, the fast formatter function is
(almost) a NOP.



Proposed EVLA fast formatter

• Scalability

− File writing distributed across many compute nodes (in parallel)

− Target filesystem distributed across many storage nodes and/or devices



Proposed EVLA fast formatter

• Scalability

− File writing distributed across many compute nodes (in parallel)

− Target filesystem distributed across many storage nodes and/or devices

• No added communication protocol

• Data formatting “intelligence” needed in head and compute nodes

• Some file access synchronization needed

• No dependency on CORBA or ACS

• Some complexity in installing, maintaining and using parallel, distributed filesystem



Proposed EVLA fast formatter

• Scalability

− File writing distributed across many compute nodes (in parallel)

− Target filesystem distributed across many storage nodes and/or devices

• No added communication protocol

• Data formatting “intelligence” needed in head and compute nodes

• Some file access synchronization needed

• No dependency on CORBA or ACS

• Some complexity in installing, maintaining and using parallel, distributed filesystem

• Potential for use of parallel, distributed filesystem by other EVLA computing
subsystems



Proposed EVLA fast formatter

• Scalability

− File writing distributed across many compute nodes (in parallel)

− Target filesystem distributed across many storage nodes and/or devices

• No added communication protocol

• Data formatting “intelligence” needed in head and compute nodes

• Some file access synchronization needed

• No dependency on CORBA or ACS

• Some complexity in installing, maintaining and using parallel, distributed filesystem

• Potential for use of parallel, distributed filesystem by other EVLA computing
subsystems

• Candidate filesystems

− Lustre

− PVFS2



Cluster management

Requirements regarding cluster installation, maintenance, monitoring and control will be
met with a third--party package, to the extent possible.

Many packages focus on job control for batch processing using clusters, which we don’t
need.

Leading candidate under evaluation is “Rocks” (from San Diego Supercomputer Center).



Rocks—1

Top half of cluster monitoring tool webpage



Rocks—2

Bottom half of cluster monitoring tool webpage



Development issues

CBE M&C

system framework

old CBE PVM
current CBE none
future CBE OpenRTE (MPI2), PVM, or homegrown? Some tools from cluster

management toolkit could also be adopted.



Development issues

CBE M&C

system framework

old CBE PVM
current CBE none
future CBE OpenRTE (MPI2), PVM, or homegrown? Some tools from cluster

management toolkit could also be adopted.

Communication with MCCC

• Some XML schemas for representing configuration data have been developed
based on the original CBE design. These schemas will need updating; for
example, more configuration information is needed for fast sorting of lag frames.

• Protocol?



Development outline

target needed work

prototype board testing • lag set assembly configuration/implementation
• 7--bit correlation products

prototype correlator • binary data format library
• configuration schemas
• communication protocol with MCCC
• auxiliary data (e.g., quantizer power levels) input
• Van Vleck correction
• timestamp adjustment
• residual phase rotation
• CBE status and performance monitoring
• > 2000 pulsar bins

beyond • parallel, distributed filesystem support
• improved logging (debug, warning, errors, ...)
• failover design and implementation
• improved system maintenance
• more capable lag set processing “scripts”
• interference mitigation


