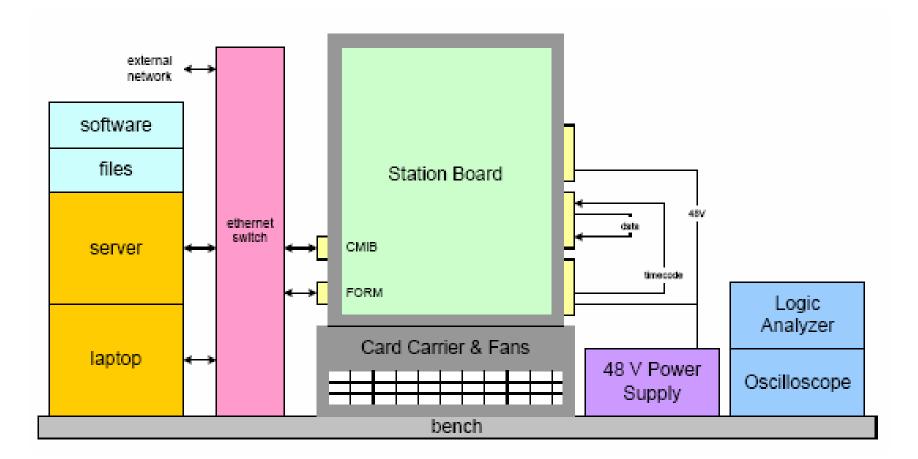


EVLA Correlator Prototype and OTS Testing *B. Carlson*

National Research CouncilConseil national de recherchesCanadaCanada

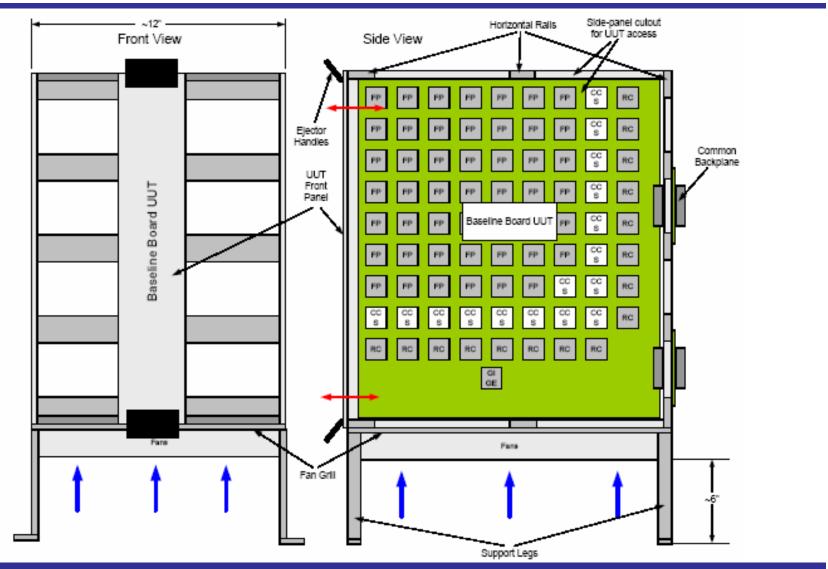
EVLA Correlator S/W F2F Apr 3-4, 2006

Outline

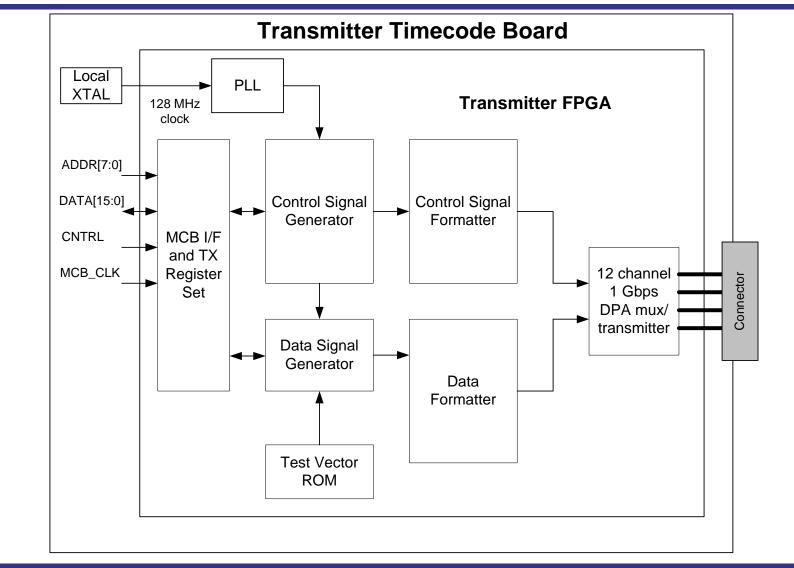

- Initial prototype testing.
 - Test setups.
 - Test equipment.
- Prototype system testing.
- On-the-Sky (OTS) testing.
 - Review of DRAFT test plan.
- Schedule.

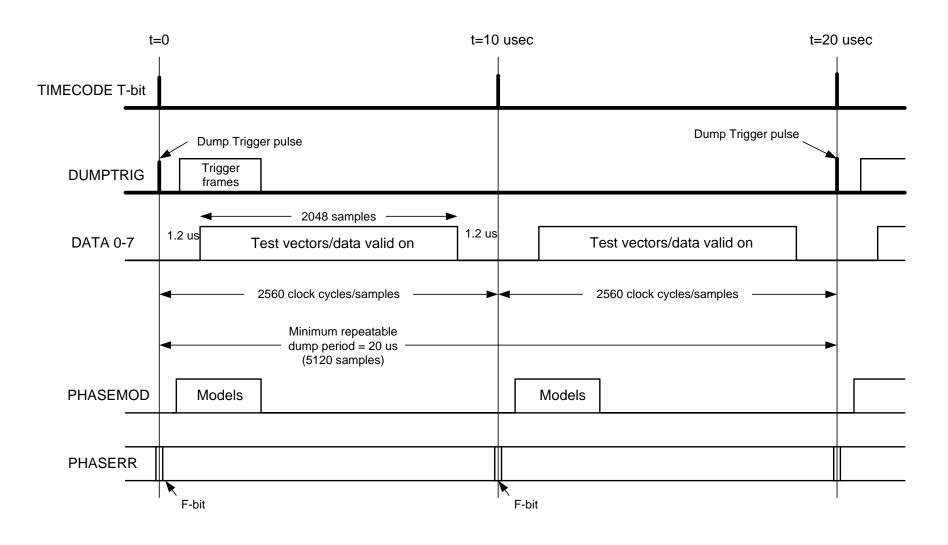
Initial Prototype Testing

- Station Board and Baseline Board tested separately.
- Station Board contains its own timing, test vector generators, and has loopback test capability for testing HM Gbps.
- Baseline Board stimulated with a Timecode Board.
 - TGB FPGA special design used to generate HM Gbps signals for testing.
 - Prototype Corr Chips socketed...all sites can be tested...some risk.
 - Formal qualification of Corr Chips before full ASIC production (hopefully in '06).

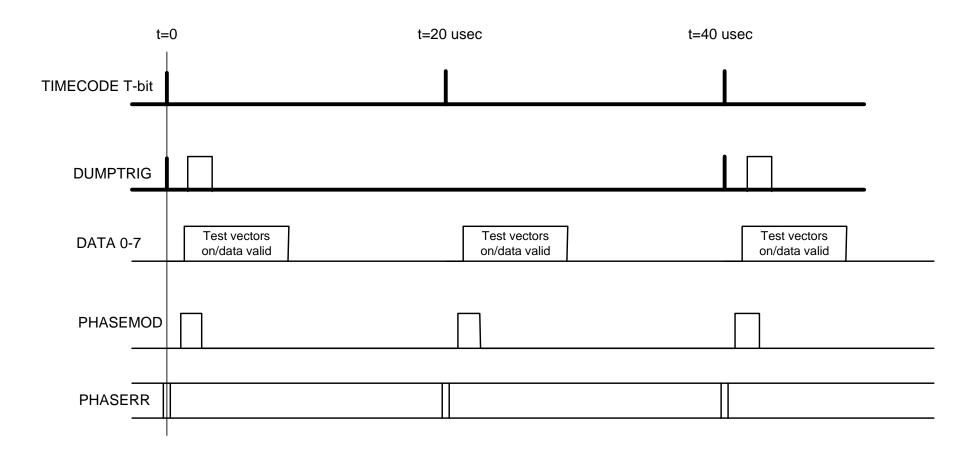

TVP: A25040N0003

EVLA Correlator S/W F2F - Prototype testing


EVLA Correlator S/W F2F - Prototype testing


Baseline Board proto testing

• Description of test vectors, GUI panels, CBE requirements in appendix of Correlator Chip prototype verification matrix document A25082N0005 (in prep, no DRAFT release yet).



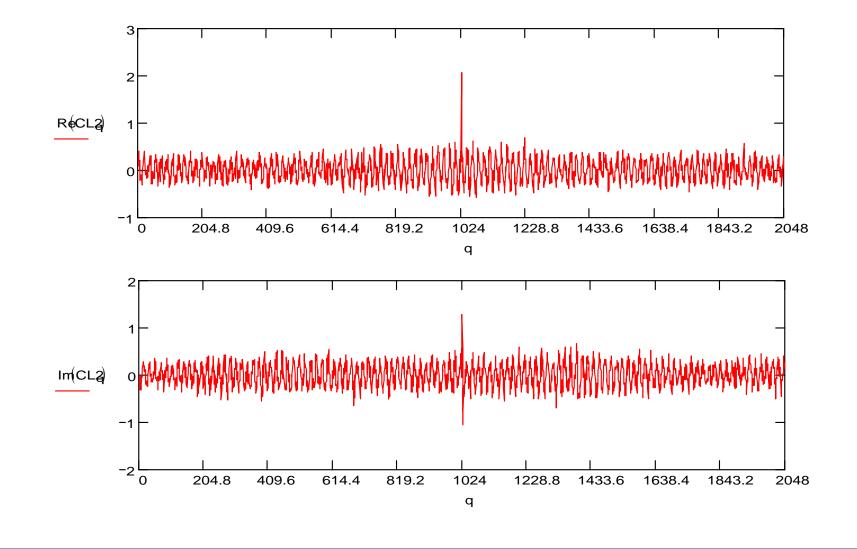
Timing and Dump Control														
Enabl	e TIMEC	ODE ODE peric	od (usec)		Data Stream Control									
	THME O		(u000)		256 Sample rate Ms/s PHASEMOD Models									
DUMI	PTRIG E	nable				DATA	Strea	am IDS	🖂 hex 📋 decimal	Hz, cycles				
	Sync Tes	t Eramo				SID	SBID	BBID	P0	P1				
	•				DATA-0	105	3	0	03026EFB	00259506				
	Speed du	imps			DATA-1	115	5	1	0D416D36	00A58873				
	Normal d	umps			DATA-2	125	7	2	05B36D8B	0047310D				
_					DATA-3	135	9	3	1A060683	0144FA12				
	UMPTRIG Period	Dump	LTA	Frames/s/	DATA-4	145	11	4	08646C1B	0068CD14				
DATA str	(usec)	Modulo	accum	CCC/chip	DATA-5	155	13	5	26CA9FCF	01E46BB2				
DATA-0	20	4	100	500	DATA-6	165	15	008A691B						
				405	DATA-7	175	17	7	338F391C	0283DD52				
DATA-1 DATA-2	40 60	8	200 300	125 56	PHASERR	_m (0,2	,4,6)	64	Auto-calc PHASEMOD Re-Calculate PH	D coeffs				
DATA-3	80	16	400	31	PHASERR	_n (1,3	,5,7)	64	coeffs for current s					
DATA-4	100	20	500	20					or Generation	_				
DATA-5	120	24	600	14		CODE PTRIG		PHASE PHASE	RR6_7 DATA-	1 🗌 DATA-5				
DATA-6	140	28	700	10		SERR0_ SERR2_		PHASE	MOD DATA-2 DATA-3					
DATA-7	160	32	800	8	L									

Baseline Board

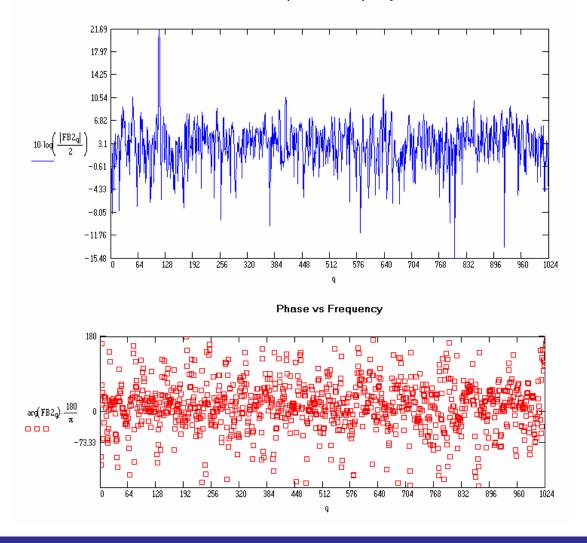
- Raw frames from CBE inspected for correctness.
- Plots from CBE...cross-correlation of vectors generated by TGB special FPGA (should) produce fringes.
- Vectors support bit-exact comparison of hardware via CBE's raw floatingpoint Re/Im lags with S/W reference correlator.
 - Don't need to use Corr Chip RTL simulation (slow).
 - Not quite bit-exact—within double-precision floating-point numerical error.
- Also, perform redundant correlations...compare with each other.

W0: START SYNC WORD -- OK aaaaaaaa W1: B31=ASIC[1] Yin=1 Xin=1 YSyner=0 XSyner=0 ACC_OV=0 OVR=0 Rsrv=000000 NUM_CLAGS= 128 CCC=13 Cmmd=010 e001006a 076423c8 W2: BBID-Y=0 SBID-Y= 7 SID-Y=100 BBID-X=1 SBID-X= 3 SID-X=200 d972e900 W3: LTA/Phase bin=55666 Recirc_blk-Y=233 Recirc_blk-X= 0 0d408a04 W4: TIMESTAMP-0= 222333444 W5: TIMESTAMP-1= 555666777 211ecd59 00000869 2153 W6: DVCOUNT-Cntr= W7: DVCOUNT-Edge= 2119 00000847 0003a300 W8: DATA_BIAS 238336 = 0003a545 238917 0 = Lag 0003a3e6 Laq 0 = 238566 0003a5f8 Lag 1 = 239096 0003a3d8 238552 Lag 1 = 0003a370 2 = 238448 Lag 0003alfa Lag 2 = 238074 0003a3a6 Lag 3 = 238502 0003a078 Laq 3 = 237688 0003a2af Laq 4 = 238255 0003a1d2 4 = 238034 Lag 0003a2ce 5 = 238286 Lag 0003a268 Lag 5 = 238184 CBE raw frame output 0003a3b6 Laq б = 238518 0003a256 Lag б = 238166 0003a1fc 7 = 238076 Lag 0003a1fa Laq 7 = 238074 . 0003a20a Lag 125 = 238090 Lag 125 = 0003a3fe 238590 0003a6cc Lag 126 = 239308 0003a57c Lag 126 = 238972 Lag 127 = 0003a550 238928 0003a418 Lag 127 = 238616 W265: END SYNC WORD -- OK 1c71c71c

B. Carlson, 2006-Apr 3-4


W266: Checksum calculated OK

b9fa8535



- 1.675218060543869e-01 -1.723961005643920e-01 3.732683427398666e-02 -5.438686505900462e-02 1.282709081580298e-03
 - -1.918932786044125e-01 -1.096716264751154e-01 5.246280143663417e-02
 - CBE raw floating-point output

Amplitude vs Frequency

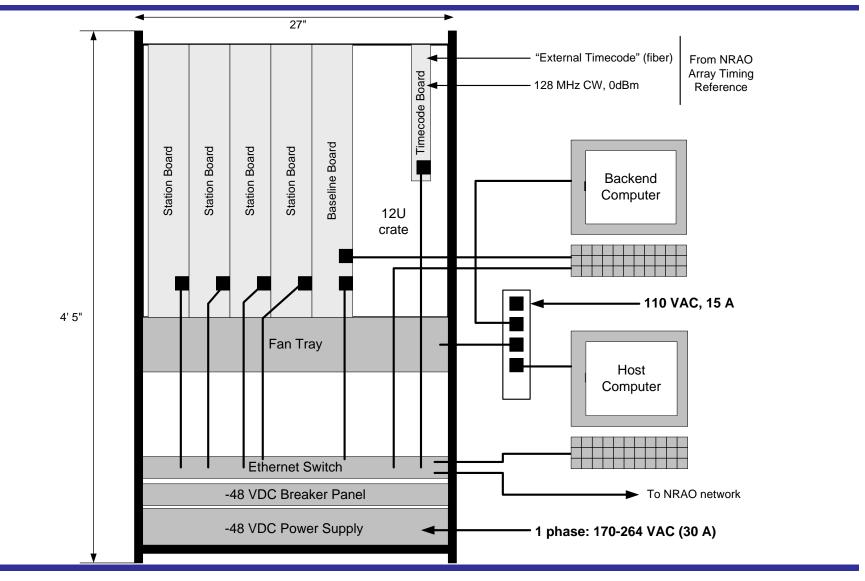
B. Carlson, 2006-Apr 3-4

EVLA Correlator S/W F2F - Prototype testing

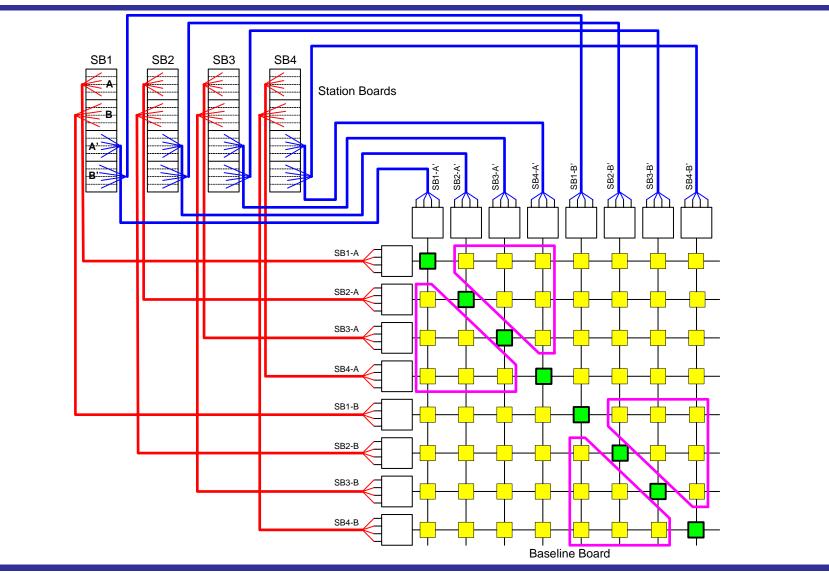
Test Equipment

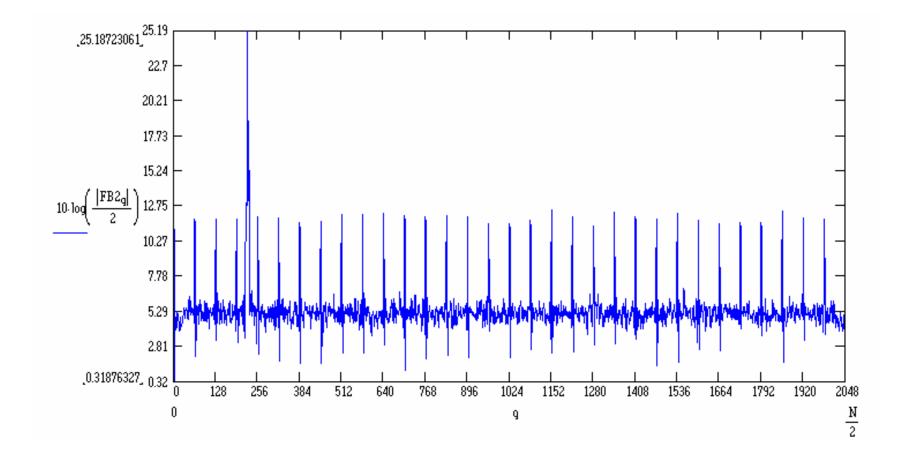
- Agilent 16900A/16950A logic analyser.
 - 64 channels, 600 MHz state, 4 GHz timing.
 - Mate with soft-touch probe headers on board.
 - 4 test pins out of FPGAs.
- Agilent Infineon **Digital Storage Oscilloscope**.
 - 4 channels, 20 Gs/s/channel. 7 GHz bandwidth.
 - 2 differential or single-ended probes.
 - Probing...difficult due to speed, signal integrity, routing density...use signal vias...special probing kits.
 - Jitter analysis software.
- X-ray machine, BGA re-work machine.

Prototype System Testing


- Connect Station Board outputs to Baseline Board inputs.
- Establish/test HM Gbps connectivity.
- Delay Module test vectors stimulate Station Board and downstream Baseline Board.
 - Compare results with software filter/correlator that processes the same test vectors.
 - Not bit-exact comparison...statistical only.

On-the-Sky Testing (OTS)


- DRAFT Test Plan A25010N0005.
- Prototype correlator test setup.
- 45 tests. Specified in plan in an overview fashion. Details filled in with GUIs/configuration files.
- Digital tone comb generator in DTS Tx or Rx or Station Board Input Chip useful...for detecting timing/delay tracking hiccups with Filter Chip tone extractor.



EVLA Correlator S/W F2F - Prototype testing

TEST	Purpose of Test	Description/Test Setup	Expected Outcome	Notes
0	Shipping damage check, prototype correlator installation and setup.	Unpack system, check for damage, install boards. Install system in test location.	All components available and undamaged. System installation successful.	Some assembly required.
1	System power-up and self- check with local 128 MHz oscillator on the Timecode Board.	Connect AC power to -48 VDC power supply. Connect AC power to to AC-powered components. Power-up system, use the Timecode local crystal oscillator. Perform Station Board checks. Perform Baseline Board checks. Check connectivity of Station-to-Baseline	All self-checks and functions ok. Backend receives frames. RTDD can display data products.	No antennas are required.
2	Computer network setup and check.	The Host Computer must be connected to the embedded processors via the switch. The switch is connected to the NRAO network to allow for time setting (or this setting may be manual via a control computer GUI), and for connection to Model Server.		The control computer sets correlator configurations. The only connection to EVLA M&C is the Model Server and, optionally, the time setting.
3	Run self-checks with connection to NRAO "External Timecode", and 128 MHz 0 dBm CW.	Same as TEST 1, except use NRAO time reference. Check for timing synchronization of TIMECODE to array UTC.	TIMECODE synchronized to NRAO UTC. Phase-lock achieved on all chips on all boards. All intra-system checks ok.	No antennas required.

11	First fringe test, single, short baseline, 8-bit, 4-bit re- quantization. One sub- band. One antenna should be "Reference Antenna", with well-known LO fiber delay.	Set RF to C-band for minimal interference. Set antenna differential frequency shift to 1 kHz. Observe and track strong continuum source. Turn on digital tone comb generator in DTS transmitter. Turn on one sub-band filter at the center of the wideband.	Stable phase-cal ampl and phase vs time, with delay tracking active. State counts, auto-spectra, power measurements within normal regions. Cross-correlation fringes detected, displayed with RTDD. Ampl and phase vs frequency as expected. SNR as expecte	This test requires 2 antennas, possibly for an extended period of time.
12	First fringe check compared with old correlator, short baseline.	•	Check SNR and normalized amplitudes. Check spectrum. Check and compare with AIPS.	This test requires 2 antennas for a short period for the observation. Comparison of old and new correlator can be performed off-line.
13	Fringe test, single, short baseline, 3-bit, 4-bit re- quantization. One sub- band.	Set RF to X-band for full 2 GHz bandwidth. Set differential frequency shift to 1 kHz. Observe and track strong continuum source. Turn on digital tone comb generator in DTS transmitter. Turn on one sub-band filter at the center of the wideband. Turn o	Stable phase-cal ampl and phase vs time, with delay tracking active. State counts, auto-spectra, power measurements within normal regions. Cross-correlation fringes detected, displayed with RTDD. Ampl and phase vs frequency as expected. SNR as expecte	This test requires 2 antennas, possibly for an extended period of time.

31	High SNR solar observation.	Correlator settings as required by astronomy teams, possibly incorporating "wideband recirculation". Possibly requiring 64 lags per CCC output mode from correlator.	Results as required by astronomy teams.	This test requires 4 antennas for the duration of the experiment.
32	Narrowband, high-spectral resolution.	Maximum spectral resolution on desired sub-band bandwidth. Possibly 1 Hz resolution. Correlator settings, number of antennas, set by astronomy team. Try to exercise all stages in the Filter Chip.	Results as required by astronomy teams.	This test requires 4 antennas for the duration of the experiment.
33	Radar-mode data capture.	Set sub-band for capture to 31.25 kHz. Capture data into NFS files. Use Filter Chip Stage 2 mixer to stop fringes and very-fine delay tracking. Observe spectral-line source with continuum.	Correlate captured data in software. Ensure results are as expected.	This test requires 4 antennas for the duration of the data capture portion of the experiment.
34-44	Astronomer-driven key science experiments of various kinds: continuum, high dynamic range spectral- line, mixed continuum and spectral-line, pulsar, recirculation, fast dumping, long integrations, radar mode.			

OTS

- Station Board real-time S/W *critical* for OTS testing.
 - Delay tracking...models from NRAO "Model Server".
 - Phase model generation.
 - Dump control (DUMPTRIG) generation.
 - Acquisition of state counts, wideband correlation coefficients, etc.
- "Programmer's Guide" (A25290N0000) contains comprehensive information on many low-level real-time functions that software needs to control.

OTS

- Many tests require science input and work for source selection and image processing/data analysis.
- Last 10 tests are completely astronomer-driven experiments of various kinds.
- OTS testing not used to qualify hardware for Stage 3 production. Used to demonstrate correlator functionality, provide "early"-use correlator, 1st step in total system integration testing.

Schedule

- Many unquantifiable uncertainties/risks. Have paid in \$, time, and tools to minimize risks as much as possible.
- Allocated ~6 months for initial prototype testing.
- Another ~6 months for getting proto corrs for OTS ready.
- ~4 months for OTS testing.
- ~Nov. 15/06 deadline for decision on Corr chip production in FY 06/07. Currently \$ not in FY 06/07 budget.

1	Task Name	04 '05	2006	3 02 0	08 03 08		2007	02 '07	03.07 04.	200		2 108 0	03.08	34 '02	2009	02 100	Q3 109 Q4 1	20
	Stage 1 Prototype Hardware in Penticton	4 05	Garbe	5 42 0		00 40	QL U/	Q2 U7	4507 44		00 1 4	2 00 1	45 00 1	24 00	QT 08	42.08	45 08 04 0	
	Stage 1 Prototype PCB Acceptance Testing					h												
3	Stage 2 Prototype Fabrication & Assembly					Ľ	h											
	Hardware/Software Integration Testing						Ľ		1									
	Critical Design Review						1	-	26/06									
-	Hardware for OTS Testing Sent to VLA							[
_	On-The-Sky Testing																	
	Stage 3 Production Hardware							[*h									
	System Integration & Testing @ Penticton										1							
	Limited Production Hardware Sent to VLA									i i	b -							
	Stage 4 Production Hardware											Ъ						
	Final Full Production Test & Burn-in in Penticton											t	Ъ					
	Full Board Installation & Testing @ VLA												Ť				_h	
_	Commissioning - Turn off old correlator				<u> </u>								1				*	
-	Prototype Software																1	
	MCCC Software												_					
	CPCC Software												_					
_	Correlator Backend Software (V1.0 Test, V2.0)												-					
	CMIB Production Software								_									