Associated Universities, Inc.

National Radio Astronomy Observatory

SAGE Committee Meeting – December 19 & 20, 2008

EVLA Goals, Progress, Status, and Projections

Rick Perley Mark McKinnon

Top-Level Project Goals

- Key goal: Improve the observational capabilities of the VLA (except for angular resolution) by a factor of ten or more.
- Provide a new monitor and control system, which must allow operation of EVLA and VLA antennas in transition.
 - This goal partially due to requirement that EVLA antennas be returned to service for continued VLA operations.
- Perform careful astronomical observations to verify that EVLA hardware and software function properly.
- Provide new data management software, including data post processing, for better access to array data products (effort distributed across divisions of NRAO)

Key EVLA Deliverables

- Full frequency coverage from 1 to 50 GHz.
 - 8 frequency bands with cryogenic receivers.
 - Two separately-tunable polarization pairs of up to 8 GHz BW
- Unmatched sensitivity:
 - 1 μ Jy/beam in full bandwidth continuum (1- σ , 9 hr).
 - 1 mJy/beam line sensitivity (1 km/sec, 1- σ , 9hr)
- New correlator with 8 GHz/polarization capability
 - 16384 minimum channels/baseline with full polarization
 - Spectral resolution varying from 0.1 Hz to 2 MHz.
 - 64 independently tuned sub-band pairs.
 - Recirculation capability and flexible correlator resource allocation to match correlator capabilities to science requirements.
 - Full range of special modes: sub-arrays, pulsar gating and pulsar binning, VLBI-enabled, phased array.
- Complete all hardware components by end of CY2012.

Overall EVLA Performance Goals

The EVLA's performance will be vastly better than the VLA's:

Parameter	VLA	EVLA	Factor
Continuum Sensitivity (1- σ , 9 hr.)	10 μJy	1 μJy	10
Maximum BW in each polarization	0.1 GHz	8 GHz	80
# of frequency channels at max. BW	16	16,384	1024
Maximum number of freq. channels	512	4,194,304	8192
Coarsest frequency resolution	50 MHz	2 MHz	25
Finest frequency resolution	381 Hz	0.12 Hz	3180
# of full-polarization sub-correlators	2	64	32
(Log) Frequency Coverage (1 – 50 GHz)	22%	100%	5

EVLA Sensitivity Goals

Band GHz	Band Code	S _e (req.) Jy	S _E (actual) Jy	Cont. Sens. 1-σ, 9 Hr., full BW μ Jy	Line Sens. 1-σ, 1 km/sec, 9 Hr mJy
1 2	L	325	335	1.6	0.5
2 4	S	235	TBD	TBD	TBD
4 8	С	245	250	0.5	0.2
8 12	X	300	TBD	TBD	TBD
12 18	Ku	385	TBD	TBD	TBD
18 - 26.5	K	650	450	0.6	0.2
26.5 - 40	Ka	760	675	0.85	0.2
40 50	Q	1200	1400	1.8	0.4

 $S_E = 5.62 \frac{T_{sys}}{\varepsilon}$

Black: Final systems

- Blue: Interim systems
- Red: Under Design

Purple: Prototype

$$\sigma \sim \frac{0.01 \,\mathrm{S_E}}{\sqrt{B_{GHz} T_{Hr}}} \quad \mu \mathrm{Jy}$$

Snapshot of Project Status

- Project is going well
- Budget: Financial health of the project is good
 - Project contingency remains at historically high levels.
 - No plans to reduce scope of project
- Technical issues largely resolved
- Project is on schedule:
 - Antenna retrofits will be complete in Q3 2010
 - Receiver installation complete in late 2012
 - Correlator scheduled for completion in Q1 2010
 - Software development on track to support commissioning and early science

Antenna Conversion Progress

- Antenna conversions on track for completion in Q3 2010
 - Antennas placed in operation immediately after conversion is complete
 - 18 EVLA antennas now in use
 - Electronics outfitting of 19th antenna is nearly complete
 - Mechanical overhaul of 20th antenna is well underway
 - Proceeding at desired rate of about 6 per year

Receiver Progress

- Excellent progress on feed horn fabrication
 - All horns fabricated for L, C, and Ka-bands
 - Fabrication of S-band horns underway
- Full production of Ka-band receivers underway
 - First fringes on single baseline on Aug 8, 2008
 - 6 receivers installed in array now
- Design and fabrication issues with OMTs resolved
 - L, C, and S-band OMTs meeting specifications

L-band horns

S-band OMT

WIDAR Correlator Progress

- Custom chips (12,000) received in Apr 2008
- High speed data cables and all 16 racks installed in Jun-Aug 2008
- On-the-sky tests of prototype began in Jul 2008
- First fringes with prototype on Aug 7
- Production review of printed circuit boards successfully completed on Dec 2-3
- Full production of boards to start in Mar 2009

Additional Progress

- Wideband upgrade to LO/IF system started in June 2008
 - Production order of 3-bit, 4Gsps digitizers received
- Fiber infrastructure completed
 - Provides flexibility in locating antennas on the array
- Achieved goal of retiring VLA Modcomp control computers in Jun 2007.
 - 30 years worth of VLA M&C software replicated in new suite of EVLA M&C software
- Completed joint ALMA/EVLA definition of binary data format for visibilities
- Support for Ka-band observing with VLA correlator built into Observation Preparation Tool

New EVLA Science: C-Band and K-Band Results

- C-band:
 - Traditional band is 4.5-5 GHz
 - Transition band is 4.2-7.7 GHz
 - First EVLA-only science: OH masers
 - AU Gem & NML Cyg: Sjouwerman et al. (2007, ApJL 666, 101)
 - ON1: Fish (2008, ApJL 669, 8)
- K-Band:
 - Traditional VLA K-band: 21.2 25.2 GHz
 - EVLA band: 18.0 26.5 GHz
 - First interferometric detection of SiS (1-0) at 18.154 GHz
 - IRC+10216 (CW Leo)
 - Claussen & Wooten

EVLA Imaging of HI Absorption at 1082 and 1139 MHz

- Emmanuel Momjian observed two redshifted absorption lines with transition system, in D-configuration, in daytime.
- Frequencies used lie in aircraft 'DME' bands.
- About 25% of data flagged for RFI of some sort.
- Sensitivity will increase dramatically with new OMT.

EVLA Science: Ka-band Spectroscopy

- Six new Ka-band (27 40 GHz) antennas now available.
- Ten available by March 2009 --- good for new science.
- As part of commissioning tests, Emmanuel Momjian has made imagines of the 36 GHz methanol maser in M8E.

Other Unique EVLA Projects Now Scheduled

- Users have noted the increased frequency access:
 - 32 proposals accepted for C-band frequencies outside the VLA 4.5 – 5.0 GHz window.
 - Galactic science proposals involve methanol, excited OH, and formaldehyde masers in star forming regions.
 - Extragalactic science involves H_2O masers near z = 2.
 - 9 proposals accepted for expanded K-band coverage.
 - Science goals mostly involving high-redshift (z ~ 2 5) molecular emission from young galaxies.
- With more frequencies opening up, the interest in observing in these new bands will increase.
 - Most significant new capability in 2009 will be availability of Ka-band (26.5 – 40 GHz)

Antenna and Wideband Receiver Availability

- VLA antennas are being converted to EVLA antennas at a rate of 6/year.
 - 18 now converted. Conversion completed mid 2010.
- Upon conversion, EVLA antennas are outfitted with:
 - available wideband receivers (K, Q initially, now C, K, Ka, Q),
 - An existing VLA narrowband receiver, (X)
 - An 'interim' EVLA receiver full tuning range, but limited sensitivity and polarization (C, L initially, now only L),
 - No receiver (Ku, S)
- New receivers will be outfitted on EVLA antennas in the field, as designs are finalized, and production enables.
- Three bands still to be designed/tested: S, X, Ku
- All receiver outfitting/retrofitting will be completed by end of 2012.

Wideband Availability Timescale

• When will full wideband tuning capability be available?

It's Better Than It Looks!

- Wideband availability plot does not include capabilities of VLA antennas and 'interim' EVLA bands.
- Next two slides detail the capabilities growth for each band.

Low Frequency Bands Capability Growth

High Frequency Bands Capabilities Growth

Notes for the Previous Slides

- To describe the evolution of frequency access, we must define three kinds of receivers/antennas:
 - Old VLA the old narrowband receivers, and the < 400 MHz frequency separation restriction between the two IF pairs.
 - Interim EVLA: (C, L bands) Full tuning range, no restriction on IF pair frequency separation, but great degradation in sensitivity and polarization outside the traditional VLA bands.
 - Final EVLA: Full bandwidths, no tuning restrictions.
- With this, the growth in **tuning** capability **using the VLA correlator** can be described fairly simply.
 - Still two IF pairs, maximum 50 MHz BW, maximum 512 channels.
 - A maximum of 22 EVLA antennas will be available to the VLA correlator.
 - Hence, after August 2009, the total number of antennas available will decrease with time, until WIDAR is on-line.
- In January 2010, remaining (~3) VLA antennas will be turned off when WIDAR correlator is brought on-line.

Increasing the Bandwidth

- Obtaining wider bandwidths and more channels requires the WIDAR correlator.
- The switchover to WIDAR cannot be a '1-step' process.
- New hardware needed to enable wider BW: a second LO pair, a second downconverter pair, and the 3-bit samplers.
 - All EVLA antennas provide 1 GHz BW now.
 - 5 EVLA antennas can provide 2 GHz BW now, rising at 1/month.
 - Full 8 GHz BW upgrade starts early next year, completed by mid 2011.
- WIDAR station boards, baseline boards.
- New software both within WIDAR and in postprocessing -- needed to manage the dataflow and increased flexibility.

The Growth of WIDAR

- Critical on-sky tests (just completed) with 4station WIDAR prototype.
- Initial implementation of the final WIDAR will be a 10-station system for further testing (known as WIDAR-0).
 - Planned to begin February, 2009.
 - Not available for science!
- In January 2010, WIDAR-0 will expand to handle all available EVLA antennas in a 'VLA Emulation' mode.
- What is this?

'VLA Emulation Mode'

- We plan to replace the existing VLA correlator with WIDAR in mid-January, 2010.
- The initial WIDAR setup will provide, for all EVLA antennas, two basic modes:
 - 1. Two independent sub-band pairs of 128 MHz each, with full polarization, and 64 channels/correlation.
 - 2. One sub-band pair, RR and LL polarizations, 128 MHz BW, 256 channels per correlation.
- For both modes, the bandwidth can be divided by powers of two while keeping the number of channels fixed.
- We will remain in this state for some time to ensure reliability and stability.

OSRO WIDAR modes (1)

- Continuum applications and spectro-polarimetry
 - Two independently-tunable sub-bands (IFs), full polarization, each with bandwidth 128/2ⁿ MHz (n=0,...,12), 64 channels

Sub-band BW (MHz)	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)
128	4	64	2000	600/∨(GHz)	38,400/∨(GHz)
64	4	64	1000	300	19,200
32	4	64	500	150	9,600
16	4	64	250	75	4,800
8	4	64	125	37.5	2,400
4	4	64	62.5	19	1,200
2	4	64	31.25	9.4	600
1	4	64	15.625	4.7	300
0.5	4	64	7.813	2.3	150
0.25	4	64	3.906	1.2	75
0.125	4	64	1.953	0.59	37.5
0.0625	4	64	0.977	0.29	18.75
0.03125	4	64	0.488	0.15	9.375

OSRO WIDAR modes (2)

Spectral line applications

 One tunable sub-band (IF), dual polarization, with bandwidth 128/2ⁿ MHz (n=0,...,12), 256 channels

Sub-band BW (MHz)	Number of poln. products	Number of channels/poln product	Channel width (kHz)	Channel width (kms ⁻¹ at 1 GHz)	Total velocity coverage (kms ⁻¹ at 1 GHz)
128	2	256	500	150/∨(GHz)	38,400/∨(GHz)
64	2	256	250	75	19,200
32	2	256	125	37.5	9,600
16	2	256	62.5	19	4,800
8	2	256	31.25	9.4	2,400
4	2	256	15.625	4.7	1,200
2	2	256	7.813	2.3	600
1	2	256	3.906	1.2	300
0.5	2	256	1.953	0.59	150
0.25	2	256	0.977	0.29	75
0.125	2	256	0.488	0.15	37.5
0.0625	2	256	0.244	0.073	18.75
0.03125	2	256	0.122	0.037	9.375

WIDAR Science, 2010 and Beyond

- All WIDAR hardware components will be here by December 2009.
- Expanded WIDAR observational capabilities will be commissioned through 2011. (Is earlier possible?)
 - Growth path not finalized.
 - Most likely path is to maximize bandwidth quickly, with limited flexibility.
 - Expanded capabilities to be made available to RSRO participants.
- More complicated and flexible modes to be added later timescales set by availability of resources.
 - Increased number of channels
 - Greatly increased frequency resolution
 - Flexible correlator resource allocation
 - Pulsar mode observing
 - Phased array mode observing

Major Future Milestones

•	Test 4-station prototype correlator on the sky	July '08 – Feb. '09
	 Four antenna test and verification system 	
•	Testing of 10-station correlator:	Feb. '09 – Jan. '10
•	Full Correlator Installation	May '09 – Dec. '09
•	VLA's correlator turned off	Jan. 2010
	 WIDAR correlator capabilities will be much greater 	eater
	 About 25 EVLA antennas will be available. 	
•	Shared Risk Observing Begins	Jan. 2010
•	Last antenna retrofitted	Sept. 2010
•	Last receiver installed	Sept. 2012