

Antenna Monitor & Control Subsystem Engineering Requirements

AMCS Engineering Introduction

KJ Ryan - 2

- Two 'Real-Time' M&C Systems
 - Correlator
 - Antennas
- This focus is on Antennas
- AMCS (Antenna Monitor & Control Subsystem)

AMCS Engineering Introduction

- This is a brief summary of:
- "Antenna M&C Preliminary Requirements Specification"
- Which can be found in the Computing Working Docs section of the EVLA web site:

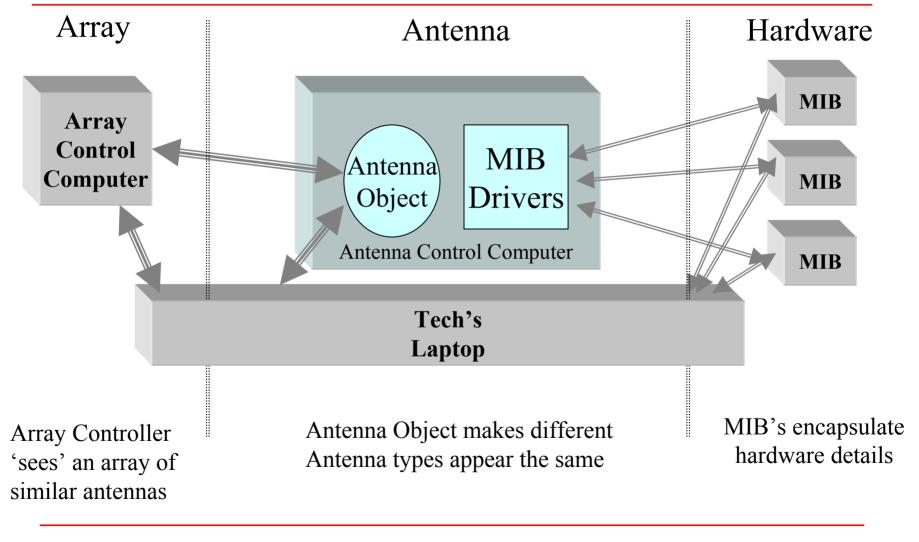
http://www.aoc.nrao.edu/vla/EVLA/Computing/WorkingDocs/index.shtml

AMCS Engineering System Overview

- One of the more lofty requirements of EVLA M&C is that it must be able to control more than one antenna type.
 - The hybrid array during transition phase
 - Future New Mexico Array (NMA) antennas
 - Existing VLBA antennas.

- Past systems designed for 1 antenna type
 - Based on a single processor
 - Tight coupling between HW and high level SW
 - Hard-coded memory mapped data at UI levels
 - Low level changes trickled up to high levels

- AMCS will be modularized for flexibility
 - Multiple processors
 - Implementation details will be contained at their appropriate levels
 - A higher level will not have to know *how* things are done at a lower level



- AMCS will have 3 functional levels
 - Low: specific antenna hardware components
 - Medium: an antenna
 - **High:** an array of antennas

AMCS Engineering Engineering Goals & Concerns

Engineering Goals & Concerns

- COTS equipment will be used where possible.
 - This includes looking for 'here-to-stay' technology
 - E.g. Ethernet vs. other networking schemes.
- Standard software engineering practices
 - Standard compilers, version management, style sheets, etc good documentation

AMCS Engineering Engineering Goals & Concerns (cont.)

- Role of the MIBs will have to be well defined
 - Data interface (control/monitor points)
 - Responsibilities
- And done early in the design stage.
 - For the sake of both hardware and software engineering

AMCS Engineering Engineering Goals & Concerns (cont.)

- Failure, Warning and Error Detection.
 - More complex over a modularized system
 - Alarms have to move across layers
 - Will also have to be carefully planned from the beginning
- Interfaces to E-to-E system have to be defined.

AMCS Engineering Engineering Goals & Concerns (cont.)

- Built In Test (BIT) will be utilized but the extent of which is not yet known
- Hardware will be responsible for its own safety
 - Can't be commanded into a catastrophic condition by software.
 - Will fail-safe with loss of software control.

AMCS Engineering Performance Issues

Known Performance Issues

- Source positioning to within sub-arcsecond level of accuracy
 - Will require AZ/EL updates at least every 50 milliseconds.
- 10 second 'Nodding' source change interval
- Continuous Scan Mosaicing
- 1 second freq switch (within band)

AMCS Engineering Performance Issues (cont.)

- 100 uSec between Scans
 - From when one scan ends to when the hardware has new scan's configuration information (not to when hardware completes configuration!)