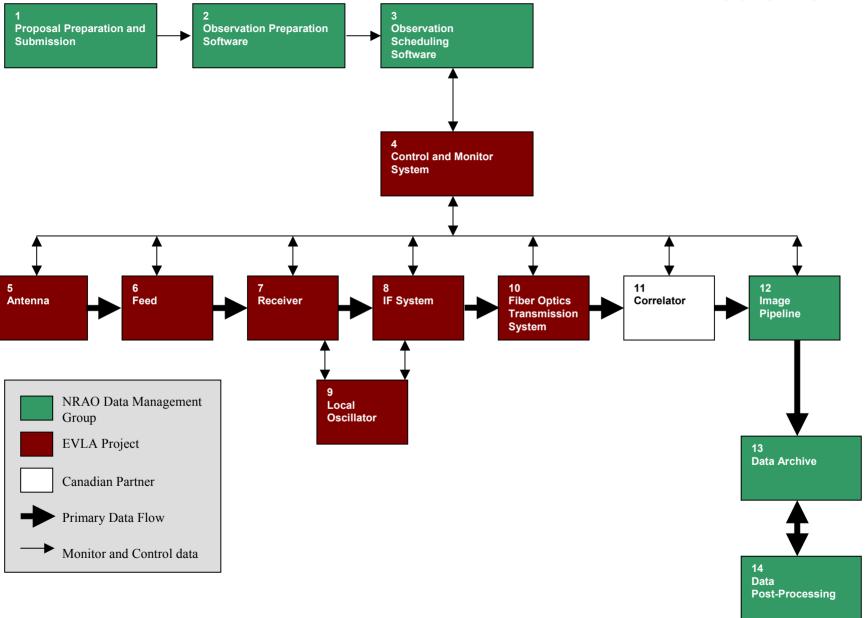


- EVLA sub-contracts data management to NRAO Data Management group
 - End-to-end processing needs being addressed by e2e project
 - Data reduction needs being addressed by AIPS++ project
 - Large data volumes, parallel processing
 - New processing needs *e.g.* wide-field, high dynamic range
 - Sub-band combination

EVLA management chart

EVLA System PDR Dec 5-6, 2001



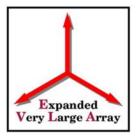
End-to-End Processing

• Is software development for end-to-end management proceeding satisfactorily?

EVLA data flow

End-to-End project (e2e)

- End-to-End processing for all NRAO telescopes
 - Improve accessibility and usability of NRAO telescopes (VLA/VLBA, GBT, EVLA)
 - Build on and consolidate existing resources as much as possible *e.g.* AIPS++


• Development costs shared across NRAO

- DM: project manager, project architect
- Basic research: project scientist
- Active construction projects: EVLA and ALMA
- Sites (VLA/VLBA, GBT) and projects (AIPS++)
- Funding
 - Use internal contracts with EVLA, ALMA, GBT, VLA/VLBA
 - New collaborations: NVO, mini-COBRA
 - Have ~ 65 FTE-years
- Progress
 - Officially started July 1
 - Project book (http://www.nrao.edu/e2e)
 - Start slowly: entering phase 1 development: interim VLA archive and pipeline

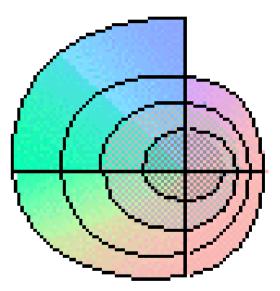
EVLA System PDR Dec 5-6, 2001

Development

• Current staff

- Tim Cornwell, Boyd Waters, John Benson
- Job hiring in progress for C++/Java software engineer
- 2 Pipeline developers soon (funded by ALMA)
- Expect 6 8 developers by middle of 2002

• Use spiral development model

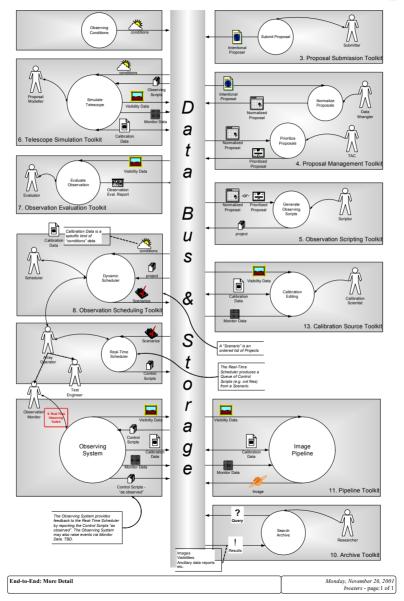

- Five year development plan
- Develop in 9 month cycles
- Get requirements, plan, design, implement, test
- Review requirements, plan, design, implement, test.....
- Add new staff incrementally

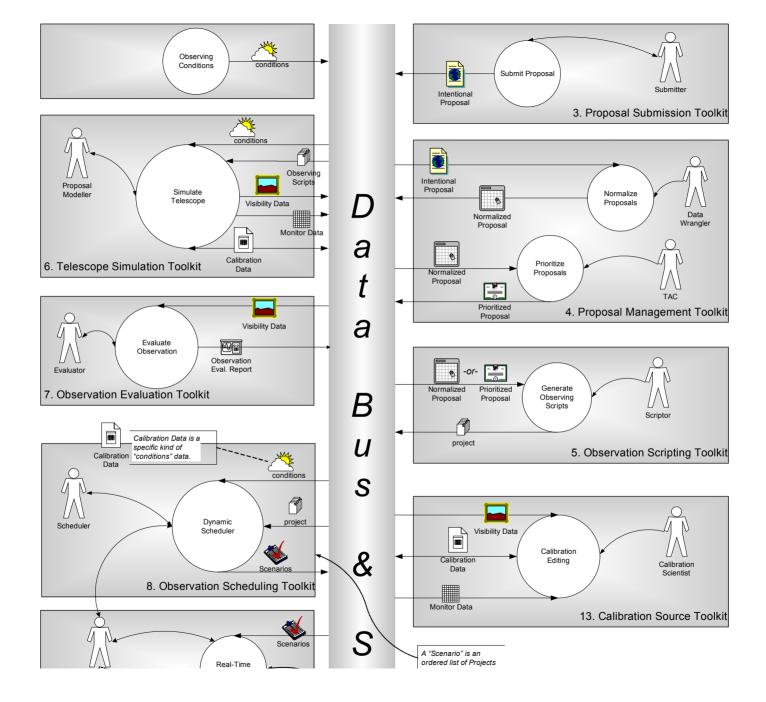
• First iteration: work on core of e2e

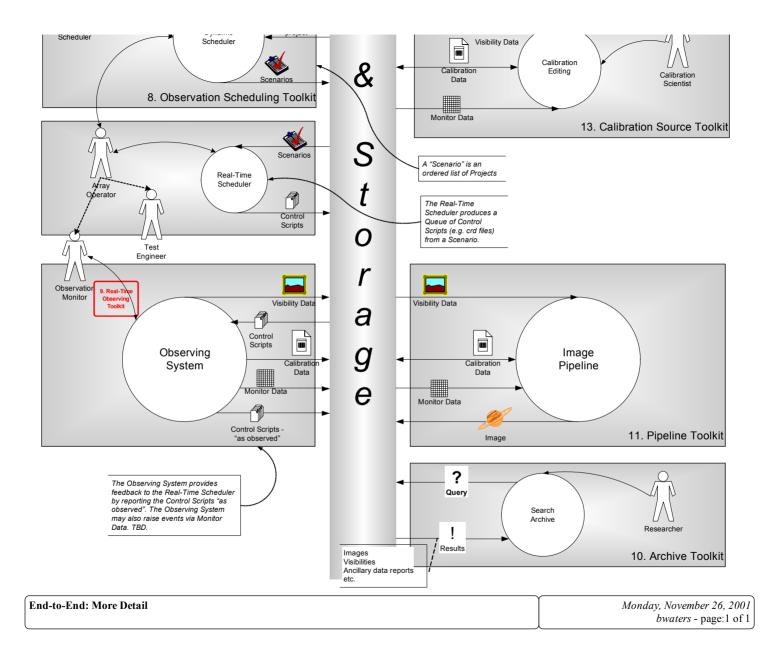
- Interim VLA archive: get all VLA export tapes on line, investigate various archiving issues
- Interim VLA pipeline: process some data from archive
- Start initial development of scripting for observing and pipeline setup
- Calibration source unification for VLA and VLBA

Tim Cornwell

EVLA System PDR Dec 5-6, 2001

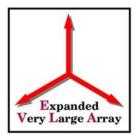



Development



- Extensive discussion of scientific requirements with Scientific Working Group
 - Captured in e2e project book
- Description of workflow from proposal to observing script
 - Converted to high level architecture and data flow
- Proceeding on basis of current requirements
- Revisit after ~ 9 months development of prototypes

e2e Architectural Diagrams



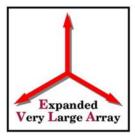
Overall e2e architecture

Package	How?	Priority	Status		
Operational Model	Document	High	First version		
Proposal Submission Toolkit	Web form or Java-based tool	Medium	Deferred		
Proposal Management Toolkit	Java-based tools plus database	Medium	Deferred		
Telescope Simulation Toolkit	AIPS++ tools	High	Deferred		
Observation Evaluation Toolkit	AIPS++ tools	Medium	Deferred		
Observation Scripting Toolkit	GBT Observe, GUI editor	High	Investigation		
Real Time Observing Toolkit	Java, AIPS++ tools	Low	Deferred		
Observation Scheduling Toolkit	OMS + local adaptations	Low	Deferred		
Archive Toolkit	AIPS++ plus rdbms?	High	Prototyping		
Pipeline Toolkit	AIPS++ tools	High	Prototyping		
Pipeline heuristics	Glish scripts	High	Prototyping		
Calibration source toolkit	OMS	High	In development		

Tim Cornwell

Operational model

• Describes/prescribes operation of NRAO telescopes


- Currently based on VLA/VLBA operational model
- Will extend and make consistent with GBT
- Yet to be agreed with telescope directors

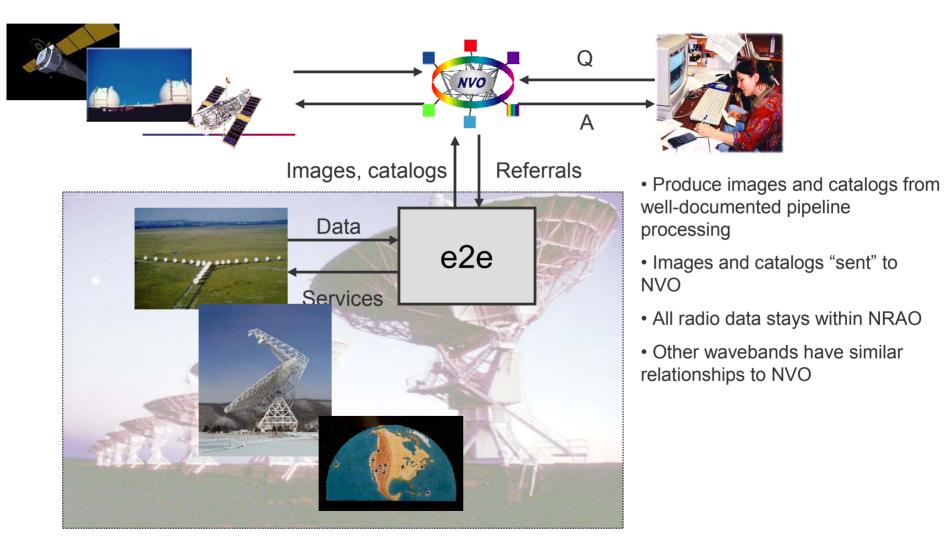
• Covers

- Proposal submission and management
- Observing scripts
- Scheduling of observations
- Calibration and imaging
- Interactive observing
- Pipeline processing
- Archive use
- Quality assessment
- Final products

Interfaces to EVLA M&C

- Observing scripts:
 - Observing blocks ~ 20min duration
- Observed data:
 - Data in \sim AIPS++ MeasurementSets, one per observing block
 - Sent to archive by M&C
 - Evaluation by pipeline
- Calibration information:
 - e.g. antenna gains, baselines, etc.

Resources


• ALMA numbers estimated by ALMA computing management

•Seem to be in line with other ground based projects

- e2e numbers based upon straw man designs, reuse
- e2e scope will be adjusted to fit resources (~ 65 FTE-years)
- <u>Neither</u> constitute a detailed bottom-up derivation of resources from requirements

Effort (FTE-years)	ALMA	e2e
Proposal Handling Software	14	10
Scheduling Software	8	15
Pipeline	12	10
Data Archive	12	20
Post Processing Software	11	10
Total	57	65

From NRAO to the National Virtual Observatory


Data processing

• Scale of processing: can it be handled by 2009-era hardware?

The numbers

- Peak data rate ~ 25 MB/s
- Data for Peak 8-hr observation $\sim 700GB$
- Floating point operations per float $\sim 100 10000$
- Peak compute rate ~ 5Tflop
- Average/Peak computing load ~ 0.1
- Average compute rate ~ 0.5 Tflop
- Turnaround for 8-hr peak observation ~ 40 minutes
- Average/Peak data volume ~ 0.1
- Data for Average 8-hr observation $\sim 70GB$
- Data for Average $1-yr \sim 80TB$

Detailed analysis

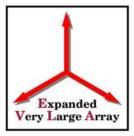
- Analyze processing in terms of FFT and Gridding costs
- Find scaling laws for various types of processing
- Express in terms of 450MHz Pentium III with Ultra-SCSI disk
- Use Moore's Law to scale to *e.g.* 2009
 Performance/cost doubles every 18 months
- Many more details in EVLA Memo 24

Detailed analysis

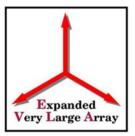
IF's	T obs	T int	t vis/int
	hr	sec	
1	12	3	702000
1	12	3	702000
8	8	10	718848
1	24	10	818532
rate			
TB/year	•		
59.04			
59.04			
18.14			
20.65			
r	1 1 8 1 ate B/yea 59.04 59.04 18.14	hr 1 12 1 12 8 8 1 24 ate	hr sec 1 12 3 1 12 3 1 12 3 8 8 10 1 24 10 1 24 10 4 10 10 59.04 10 10 59.04 10 10 59.04 10 10 59.04 10 10

Scale of processing

- Assume Moore's Law holds to 2009
 - Moore himself believes this......
- Cost of computing for EVLA
 - $\sim 10 20$ processor parallel machine
 - ~ \$100K \$200K (2009)
 - Archive ~ 50 TB per year
 - ~ \$50K \$100K (2009)
- Comparable to computing cost for ALMA
- Software costs
 - AIPS++ *as-is* can do much of the processing
 - Development needed for high-end, pipelined processing
 - Some scientific/algorithmic work *e.g.* achieving full sensitivity, high dynamic range



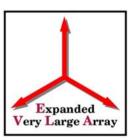
- Moore's Law gives ~ 64 fold increase for a desktop
 I.e. \$nK where n ~ 1-3
- Many projects do-able on (2009-era) desktop
 - e.g. 1000 km/s velocity range of HI for galaxy
 - *e.g.* Mosaic of SGRA West in all H recombination lines between 28 and 41 GHz
- Larger projects may require parallel machine or many days on a desktop
 - *e.g.* Full sensitivity continuum image of full resolution 20cm field
 - NRAO would provide access over the net


Data processing

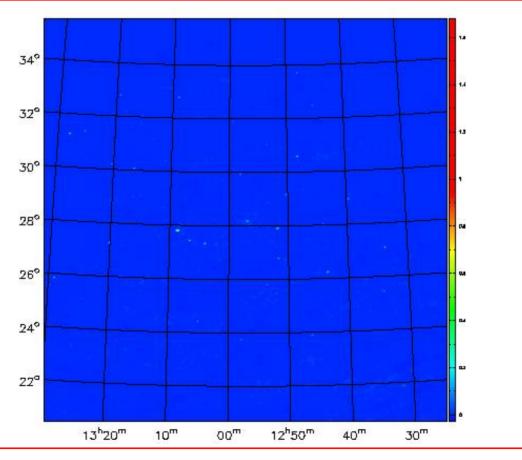
• Is software development for data processing proceeding satisfactorily?

General AIPS++ performance

- Performance standards for AIPS++:
 - Must be comparable to other disk-based packages
 - If not, filed and handled as a high-severity defect
- Analysis of existing performance defects:
 - No inherent design-related problems found so far
 - Cases of poor performance have been invariably due to drift as part of regular code evolution
- Current approach to performance issues:
 - Have existing correctness tests which are run regularly
 - Building separate performance benchmark suite
 - Will run routinely to inter-compare AIPS++ and other packages, and catch performance drift early
 - Performance benchmarks will cover a wide range of problem sizes and types
 - Have a separate high-performance computing group within AIPS++


AIPS++ high-performance computing group

- Joint initiative with the National Center for Supercomputing Applications (NCSA) in Urbana-Champaign, as part of the broader NCSA Alliance program
- Separately funded by an NSF grant
- Objectives:
 - Address computationally challenging problems in radio astronomy which require supercomputer resources
 - Provide an AIPS++ infrastructure to integrate support for HPC applications
 - Provide portable solutions on common supercomputer architectures and Linux clusters
 - Build expertise in HPC issues such as parallel I/O, profiling and algorithm optimization



Example: parallelized wide-field VLA imaging

VLA observations of the Coma cluster (test data courtesy Perley *et al.*)

225 imaging facets, 32 processors, speed-up factor ~20 to a net 10 hours elapsed time

Tim Cornwell

EVLA System PDR Dec 5-6, 2001


AIPS++ pipeline development

- Pipelines in AIPS++:
 - A key requirement across the consortium and affiliates
 - Prototypes (ATCA, BIMA) or full systems (ACSIS, Parkes multi-beam) underway
 - Design effort within AIPS++ and with other projects (e.g. ALMA)
- VLA prototype pipeline:
 - Under development as part of the first e2e prototype
 - Based on the 2 TB VLA disk archive to be deployed soon
 - Have purchased a pipeline server (4-processor Linux IBM x370 system) for the prototype pipeline system
 - Early version will be confined to very restricted VLA observing modes (likely continuum)
 - Prototype will test prototype pipeline design, implementation and performance issues on a short time-scale (Spring 2002)
 - Vital feedback for more complete pipeline design and development work for the VLA/EVLA

Post processing

- Mostly well-understood and in place
 - AIPS++ package: can reduce VLA data end-to-end
- EVLA-specific areas requiring more development
 - Very high dynamic range
 - Achieving full continuum sensitivity at 1.4 GHz and below
 - Asymmetric primary beams
 - RFI mitigation
 - ATNF post-correlation scheme
 - Masking, passive and active
 - Very large data volumes