
WIDAR Prototypes:
Correlator Backend

&
Fast Formatter

EVLA M&C Transition System Software CDR — 2006–12–05 M. Pokorny



1

Outline

. Subsystem overview

. Implementation environment

. Architecture

. CBE/FF interfaces

. Node processes

. CBE program designs

. Design details

. Fast formatter design

. Current status



2

CBE/FF in transition system software



3

Implementation environment

Development tools

• C language, GNU libc, gcc

• CVS

• GNU autotools

• dejagnu, check (with gcov)

• oprofile



3

Implementation environment

Development tools

• C language, GNU libc, gcc

• CVS

• GNU autotools

• dejagnu, check (with gcov)

• oprofile

Library usage

glib, popt, fftw, cblas, atlas, check



4

Architecture

Prototype CBE and Fast Formatter

Baseline Board

compute (node)head (node) storage (node)

MCCC DCAF



5

Baseline board interface

Prototype CBE and Fast Formatter

Baseline Board

compute (node)head (node) storage (node)

MCCC DCAF

• lag frames delivered via UDP packets
• read-only
• compute node



6

MCCC interface

Prototype CBE and Fast Formatter

Baseline Board

compute (node)head (node) storage (node)

MCCC DCAF

• interface to M & C
• head node



7

DCAF interface

Prototype CBE and Fast Formatter

Baseline Board

compute (node)head (node) storage (node)

MCCC DCAF

• SDM (science data model) data
• write-only
• head node



8

Archive interface

Prototype CBE and Fast Formatter

Baseline Board

compute (node)head (node) storage (node)

MCCC DCAF

• correlator binary data format files
• storage node
• head node for signalling



9

Head node processes

• Control process

− spawn Monitor process

− communicate with MCCC

− configure backend for sub-scan



9

Head node processes

• Control process

− spawn Monitor process

− communicate with MCCC

− configure backend for sub-scan

• Monitor process

− monitor compute node status and performance

− send monitor data to Control process



9

Head node processes

• Control process

− spawn Monitor process

− communicate with MCCC

− configure backend for sub-scan

• Monitor process

− monitor compute node status and performance

− send monitor data to Control process

• Output process

− initialize correlator output binary data format files, and write headers

− send data (e.g., science data model main table) to DCAF



10

Compute node processes

• Input process

− configure compute node for sub-scan

− spawn lag set processing processes

− receive lag frames

− sort lag frames into lag sets



10

Compute node processes

• Input process

− configure compute node for sub-scan

− spawn lag set processing processes

− receive lag frames

− sort lag frames into lag sets

• Lag set processing processes (lagset_proc)

− data reduction of lag sets including normalization, windowing, Fourier transformation,
integration

− write data to binary data format files



11

Input process

Single-threaded, event-driven design

event action

receive data on command socket input XML document data, parse
when document is complete

SIGINT, SIGTERM, SIGHUP set flag for termination

SIGCHLD clean up resources associated with
child

low frequency timer act on termination flag

receive UDP packet on lag frame
input socket

sort lag frames as they are read
from socket, continue reading until
no packets are available



12

Sorting — lag set sequences

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

tiN tiN+1 tiN+2

· · ·
tiN+N−1

• Each element of a lag set sequence contains a partially decoded lag frame.

• Lag sets in the lag set sequence are indexed by time.

• Lag frames within a lag set are indexed by an offset.

• Each lag set sequence is implemented in shared memory accessible by a single
lag set processing process.



13

Sorting — lag frame fields

Sort, v. tr.

1. To map a lag frame to a lag set and frame offset in a lag set sequence.



13

Sorting — lag frame fields

Sort, v. tr.

1. To map a lag frame to a lag set and frame offset in a lag set sequence.

Start_BlockY NBlocks nlags CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

STATUS_BITS FRAME_COUNT RECIRC_BLK-Y RECIRC_BLK-X

TIMESTAMP-0

TIMESTAMP-1

DVCOUNT-Center

DVCOUNT-Edge

Board S/N LTA Bin #

Lag0-In_phase accumulator

Lag0-Quadrature accumulator

Lag1-In_phase accumulator

Lag1-Quadrature accumulator
...

Lag127-In_phase accumulator

Lag127-Quadrature accumulator

LTA data frame



13

Sorting — lag frame fields

Sort, v. tr.

1. To map a lag frame to a lag set and frame offset in a lag set sequence.

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

...

Lag frame sorting fields



14

Sorting — mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #



14

Sorting — mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

Mapping of header words to (lag set sequence, frame offset) pair implemented using a
hash table.

• Avoids wasted memory required by an array
• Unstructured (that is, no uniform relations required between number of, e.g.,

subbands per baseband, or spectral channels per subband)
• Time used for lookup is not a significant factor
• Mapping can be done without decoding the header fields



14

Sorting — mapping

Lag frame (masked) header words used as sorting key

Start_BlockY NBlocks CChipID CCC# FType

BBID-Y SBID-Y SID-Y BBID-X SBID-X SID-X

RECIRC_BLK-Y RECIRC_BLK-X

Board S/N LTA Bin #

Mapping of header words to (lag set sequence, frame offset) pair implemented using a
hash table.

• Avoids wasted memory required by an array
• Unstructured (that is, no uniform relations required between number of, e.g.,

subbands per baseband, or spectral channels per subband)
• Time used for lookup is not a significant factor
• Mapping can be done without decoding the header fields

Mapping of lag frame to lag set within a lag set sequence is done by simple timestamp-
based indexing of the lag set sequence array.



15

lagset_proc process

Single-threaded, event-driven design

event action

SIGINT, SIGTERM, SIGHUP set flag for termination

low frequency timer act on termination flag

lag set scan timer scan lag set sequences for lag sets
to process



16

Lag set processing

• scan sequence(s) for complete and late lag sets

• “lock out” complete and late lag sets

• process complete lag sets

− normalization

− windowing

− Fourier transform

− integration

? write output when integration is complete

• “unlock” near-term future lag sets



17

Fast formatter

Role

Produce data stream in EVLA correlator output binary data format (MIME format
with XML header and binary attachments).



17

Fast formatter

Role

Produce data stream in EVLA correlator output binary data format (MIME format
with XML header and binary attachments).

Requirements

• Create BDF data stream(s).
− Create MIME data stream, and write XML header.
− Assemble output data from lagset_proc processes in a single data stream.

• Send data stream to archive.



17

Fast formatter

Role

Produce data stream in EVLA correlator output binary data format (MIME format
with XML header and binary attachments).

Requirements

• Create BDF data stream(s).
− Create MIME data stream, and write XML header.
− Assemble output data from lagset_proc processes in a single data stream.

• Send data stream to archive.

Implementation

• Files are produced in the EVLA correlator output binary data format on a
parallel file system.

• lagset_proc processes write visibilities, etc.
• Head node output process creates files, and writes the MIME and XML header

data.
• Head node ships the completed files to archive.



18

Current status

Implementation

Input and lagset_proc processes on compute node.



18

Current status

Implementation

Input and lagset_proc processes on compute node.

Test environment

• Two, dual 3 GHz processor machines connected by gigabit Ethernet
• One (compute) node for CBE processes, one node for frame simulator, no CBE

head node, no storage nodes
• Lag sets consisting of a single lag frame
• Data processing comprising normalization, (time-domain) windowing, Fourier

transform, integration and ASCII file output



18

Current status

Implementation

Input and lagset_proc processes on compute node.

Test environment

• Two, dual 3 GHz processor machines connected by gigabit Ethernet
• One (compute) node for CBE processes, one node for frame simulator, no CBE

head node, no storage nodes
• Lag sets consisting of a single lag frame
• Data processing comprising normalization, (time-domain) windowing, Fourier

transform, integration and ASCII file output

Performance

• Achieved frames rates of up to approximately 106,000 frames per second (i.e.,
∼ 94% of gigabit ethernet total bandwidth.)

• Processor utilization

process CPU utilization
input ∼ 95%

lagset_proc ∼ 45%


