

Preliminary Design Review

EVLA 1st and 2nd Local Oscillators

- 12-20 GHz
 - $F_0 = (n*512 \text{ MHz} + \text{FTS})$ where 23<=n<=40
 - Tuning Span $F_0 + TBD$
- Phase Noise
 - -90 dBc @ 10 kHz @ 20 GHz (x fs)
 - -107 dBc @ 100kHz @ 20 GHz (x fs)
- Output Power
 - +14 dBm +/- 0.5 db

1st LO YIG

- Electromagnetically Tuned YIG oscillator by Micro-Lambda
- Integrated Drivers
- Requires +15 VDC @ 700mA and +24 VDC
 @ 50 mA

• 1.75" Cylinder

Specifications - 2nd LO

- 10.8 14.8 GHz
 - $F_o = n*128 + FTS$ where 84 <= n <= 116
 - Tuning Span: $F_0 + TBD$ (almost continuous)
- Phase Noise
 - -90 dBc @ 10 kHz @ 14.8 GHz
 - -105 dBc @ 100 kHz @ 14.8 GHz
- Output Power
 - +14 dBm +/- 0.5 dB

2nd LO YIG

- Permanent Magnet YIG Oscillator by Micro-Lambda
- Integrated Drivers
- Requires +/- 12 VDC
 @ 365 & 165 mA and
 +15 VDC @ 50 mA
- ~ 7.2 Watts

1" Cube

General Functional Description

- Power on reset report back "OK"
- MIB Frequency command
- Coarse tune loop (prescaler + MIB)
- AGC DAC set to cal data
- Loop Closes, Lock to comb +/- FTS
- Output tracks FTS
- Only monitor data reported back, FTS operates "autonomously" reducing M/C load & RFI

Reference

- Herotek Comb Generator
 - 128 or 512 MHz @ 0 dBm input
 - Integrated driver amplifier,
 +15 VDC @ 200mA
 - "Like" GC526, GC100
- Equalizer (Custom Matched)
- Band Pass Filter
- Splitter (2 or 4-way)

7

Block Diagram

- YIG
- Isolator
- Prescaler Coupler
- AGC Amplifier
- Output Coupler
- Output Splitter
- Mixer L port

- Mixer R Port
 - Comb Generator
 - Equalizer
 - BPF
 - Splitter (2 or 4 Way)

Block Diagram

- Mixer I port
- Band Pass Filter (128 MHz)
- IF Amplification
- Band Pass Filter
- Divider
 - Lock Detector
 - Phase Detector

- Phase Detector
- Loop Filter
- FM Coil Driver
- (Loop Closed)

Design Considerations

- MIB handles most functions
- Onboard SRAM holds cal data, etc.
- No Mechanical Adjustments
- SPI bus devices DAC's, ADC's and digital potentiometers
- Design in flexibility in prototype "EVB"

RFI Considerations

- Comb line filtered at source
- Continuous wire mesh gaskets
- Front panel ??
- Prescaler
- Non RF connectors minimally sized

Monitor and Control Points

- Monitor
 - O/P Power
 - FTS Power
 - Lock
 - YIG Heater I
 - PLL V and I
 - Frequency (1 MHz)
 - Temperature

- Control
 - YIG Main Tune
 - AGC
 - Reset
 - FTS Parameters
 - Various Calibration capabilities (NO MECHANICAL!)

Front Panel

- Lock indicator (not uP dependant)
- Frequency
- FTS Sample
- Reference / Clock Sample
- FM coil Voltage / (selectable)

Questions

EVLA LO-IF PDR 22-23 January 2002