

1

Feed & Front End PDR

Q, Ka, K, Ku & X-Band Receivers

Bob Hayward Receiver Engineer

High Frequency Receivers

EVLA Receiver Bands:

- Q-Band : $40 \rightarrow 50 \text{ GHz}$
- Ka-Band : $26 \rightarrow 40 \text{ GHz}$
- K-Band : $18 \rightarrow 26 \text{ GHz}$
- Ku-Band : $12 \rightarrow 18$ GHz
- X-Band : $8 \rightarrow 12 \text{ GHz}$

Baseline Design

- What follows is the preliminary "baseline" design and is an extrapolation of the current VLA receiver concept
- To realize the linearity required to carry out Solar observing (with its 70 dB dynamic range requirements) we will need to adopt a new receiver design philosophy & make several major modifications to the current L, Q & K systems
 - See PAL's presentation

VLA Receiver History

- VLA originally built with L, C, Ku & K bands
 - All inside a single Dewar (ie: the "A-Rack")
 - Required long waveguide runs between Feeds & A-Rack Dewar
- For Voyager Encounter in 1986, new X-Band Rx mounted in a separate dewar on the Feed Circle
- Followed by VLBA-style L-Band in early 90's
- New Q & K-Band Rx's installed from mid 90's
- C & Ku-Band still in A-Rack

QAKUX Receivers General Comments

- Receivers \geq X-Band all have 8-12 GHz IF's
- Two Circular Polarization IF Pairs
 - Two independent LO's and 4 Mixers
 - Four 8-12 GHz IF's
 - *RCP-1* & *LCP-1* and *RCP-2* & *LCP-2*
 - Allows 8 GHz bandwidth per polarization (total BW = 16 GHz)
- Common 8-12 GHz IF Down-Converter (4 modules)
- K-Band design will be scaled in frequency for Ka, Ku and (probably) X-Band
- New feature Non-Linear Threshold Detectors (NLTD)

QAKUX Receivers Polarizers

Receiver	Polarizer Type	Comment
Q-Band	Sloping Septum	Atlantic Microwave (already in use at VLA)
Ka-Band	Phase Shifter + Bøifot Symmetric Junction OMT	Scaled up in frequency from K-Band
K-Band	Phase Shifter + Bøifot Symmetric Junction OMT	Existing CDL Design (Wollack)
Ku-Band	Phase Shifter + Bøifot Symmetric Junction OMT	Scaled down in frequency from K-Band
X-Band	Phase Shifter + Bøifot Symmetric Junction OMT	Scaled from K-Band (or Quad Ridge+Hybrid ?)

T_{Rx} Estimates VLBA vs. EVLA Comparison

Receiver	VLBA T _{Rx} (°K)	EVLA T _{Rx} (°K)
Q-Band	56	44
Ka-Band	-	38
K-Band	61	28
Ku-Band	34	21
X-Band	35	21

Note : Does not include noise contribution from Down-Converter Subsystem

Bob Hayward Receiver Engineer

- Frequency Coverage = $40 \rightarrow 50 \text{ GHz}$
- LO Ref Input = $16.6 \rightarrow 20.0 \text{ GHz} @ 0 \text{ dBm}$
- Uses Tripler to provide an LO of $50 \rightarrow 60 \text{ GHz}$
- IF Output = 8-12 GHz @ approx -45 dBm
- CDL 4-stage LNA with $T_N \approx 25^{\circ} K$
- Estimated $T_{Rx} \approx 44^{\circ}K$

Bob Hayward Receiver Engineer

Current VLA Q-Band Receiver (side view)

Bob Hayward Receiver Engineer

Current VLA Q-Band Receiver (side view)

Bob Hayward Receiver Engineer

Q-Band EVLA Modifications

- Retain:
 - Feed, Polarizer, Isolators, LNA's (most of them), LO Amp, Passive Triplers, Mixers, Noise Diode, Dewar, Model 22 Fridge
- Add:
 - 2 RF Splitters, 2 Post Amps, Isolators, 2nd Mixer pair, 2nd LO Amp, 2 Triplers (Active?)
- Remove:
 - IF Chain (Filter + Amp)
- Uncertain:
 - Cal Coupler (replace 30 with 20 dB), Card Cage

Q-Band Receiver Major Components

- Polarizer
- LNA
- Post Amp

- Atlantic Microwave Septum
- CDL 4-stage InP HEMT
- Spacek Labs (2 x \$3.5K)
- G = 25dB, NF = 5dB, $P_0 = +4dBm$
- NRAO HMMC-5040 MMIC ? (20-30 & 40-60 GHz, 10 dB)
- Tripler/Mixer
- Spacek M45-8.4 (2 x \$9.1K)
- x2/Mixer Option (2 x \$5.6K)

Q-Band Upgrade Incremental Cost (Tripler)

Component	Item	2 x 4 GHz IF's		4 x 4 GHz IF's	
	Cost	Qty	Cost (\$K)	Qty	Cost (\$K)
LO Amp	2.2	0	0	1	2.2
LO Splitter	0.2	0	0	1	0.2
LO Tripler / Mixer	7.8	0	0	2	15.6
RF Post Amp	3.5	2	7.0	2	7.0
RF Splitter	1.0	0	0	2	2.0
RF Isolators	1.0	2	2.0	2	2.0
IF Isolators	0.2	2	0.4	4	0.8
Total per Rx			\$9.4K		\$29.8K
Total for 30 Rx's			\$282K		\$894K

Q-Band Upgrade Incremental Cost (Doubler)

Component	Item	2 x 4 GHz IF's		4 x 4 GHz IF's	
	Cost	Qty	Cost (\$K)	Qty	Cost (\$K)
LO Amp	2.2	0	0	1	2.2
LO Splitter	0.2	0	0	1	0.2
LO Doubler/Mixer	5.6	0	0	2	11.2
RF Post Amp	3.5	2	7.0	2	7.0
RF Splitter	1.0	0	0	2	2.0
RF Isolators	1.0	2	2.0	2	2.0
IF Isolators	0.2	2	0.4	4	0.8
Total per Rx	\searrow	\ge	\$9.4K	\ge	\$25.4K
Total for 30 Rx's	\searrow	\searrow	\$282K	\searrow	\$762K

Sensitivity of Current **Q-Band Systems**

Bob Hayward **Receiver Engineer** Feed & Front End PDR 12-13 Feb 2002

populated VLA antennas, we will want to replace 23 out of the 50existing LNA's

- 20 old GaAs - 3 sub-standard InP

NRÃO)

Component

Vacuum Window

Cold WG / Coax

Warm WG / Coax

Total T_{Rx}

Feed

Polarizer

Isolator

Post Amp

Splitter

Mixer

IF Cable

LNA

Cal Coupler

Q-Band Noise Budget

NF=5 dB

300

300

300

	Duug	,01	
Temp(K)	L/G (dB)	$\Delta T_{Rx}(K)$	
300	-0.05	3.474	Expanded Very Large Array
300	-0.05	3.474	
18	-0.3	1.287	
18	-0.2	0.848	
18	-0.5	2.196	
$\mathbf{Tn}=25$	+35	32.206	
150	-2	0.036	
300	-0.5	0.024	

0.462

0.001

0.016

0.017

44.0

+25

-4

-10

-3

Bob Hayward **Receiver Engineer**

[]	O-Band No				
	× 2000 110				
	Component	Temp (K)	L/G (dB)	$\Delta T_{Rx}(K)$	
NRAO	Feed	300	-0.05	3.474	Expanded Very Large Array
	Vacuum Window	300	-0.05	3.474	
	Polarizer	18	-0.3	1.287	
	Cal Coupler	18	-0.2	0.848	
	Isolator	18	-0.5	2.196	
	LNA	Tn = 25	+35	32.206	
	Cold WG / Coax	150	-2	0.036	
	Warm WG / Coax	300	-0.5	0.024	
	Post Amp	-	-	-	
	Splitter	300	-4	0.329	
	Mixer	300	-10	4.913	
	IF Cable	300	-3	5.433	
	Total T _{Rx}		\ge	54.2	

Bob Hayward Receiver Engineer

- Frequency Coverage= $18 \rightarrow 26.5 \text{ GHz}$
- LO Ref Input = $14.0 \rightarrow 18.25 \text{ GHz} @ 0 \text{ dBm}$
- Uses Doubler to provide an LO of $28 \rightarrow 36.5 \text{ GHz}$
- IF Output = 8-12 GHz @ approx -45 dBm
- CDL 4-stage LNA with $T_N \approx 15^{\circ} K$
- Estimated $T_{Rx} \approx 28^{\circ} K$

Bob Hayward Receiver Engineer

Current VLA K-Band Receiver (front view)

Bob Hayward Receiver Engineer

K-Band EVLA Modifications

- Retain:
 - Feed, Polarizer, Isolators, LNA's (most of them), Post Amp,
 - LO Amp, Noise Diode, Dewar, Model 350 Fridge
- Add:
 - 2 RF Splitters, Isolators, 2nd LO Amp, 2 LO Doublers,
 - 4 new wideband Mixers (last 8 Rx's have WB Mixers need 104)
- Remove:
 - Mixers, IF Filters
- Uncertain:
 - Cal Coupler (replace 30 with 20 dB), Card Cage
 - Post Amps (35 vs 25 dB)

K-Band Receiver Major Components

- Polarizer
- LNA
- Post Amp
- Doubler
- Mixer

- Phase-Shifter + Symmetric OMT
- CDL 4-stage InP HEMT
- Quinstar QLN-2240J0 (2 x \$1.1K)
- G = 25dB, NF = 4dB, $P_0 = +10dBm$
- TBD (2 x \$?K)
- Miteq TB0440LW1 (4 x \$1.1K)
- RF/LO=4-40 GHz, IF=0.5-20 GHz

K-Band Upgrade Incremental Cost

Component	Item	2 x 4 GHz IF's		4 x 4 GHz IF's	
Component	Cost	Qty	Cost (\$K)	Qty	Cost (\$K)
LO Amp	1.0	0	0	1	1.0
LO Splitter	0.2	0	0	1	0.2
LO Doubler	1.5	2	3.0	4	6.0
LO Mixer	1.1	2	2.2	4	4.4
RF Post Amp	1.1	2	2.2	2	2.2
RF Splitter	1.0	0	0	2	2.0
RF Isolators	0.5	0	0	4	2.0
IF Isolators	0.3	2	0.6	4	1.2
Total per Rx			\$8.0K		\$19.0K
Total for 30 Rx's	\searrow	\searrow	\$240K	\searrow	\$570K

- Water Vapor Radiometer
 - Plans for bolting a WVR system to the bottom of Rx
 - Temperature stabilize system with Noise Diode, RF splitter, Post Amp plus WVR back end
- K-Band design will be scaled up/down in frequency for Ka, Ku & (probably) X-Band
 - Drawings for K-Band being updated and improved

K-Band Sensitivity VLA & VLBA

Bob Hayward Receiver Engineer

NRAO

Component

K-Band Noise Budget

Temp (K)

L/G (dB)

,et	t
$\Delta T_{Rx}(K)$	
3.474	Expanded Very Large Array
0.692	

Feed	300	-0.05	3.474
Vacuum Window	300	-0.01	0.692
PS + OMT	18	-0.3	1.287
Cal Coupler	18	-0.2	0.848
Isolator	18	-0.5	2.196
LNA	Tn = 15	+35	19.147
Cold WG / Coax	150	-2	0.035
Warm WG / Coax	300	-0.5	0.023
Post Amp	NF=4 dB	+25	0.320
Splitter	300	-4	0.001
Mixer	300	-10	0.015
IF Cable	300	-3	0.017
Total T _{Rx}			28.1

Bob Hayward Receiver Engineer

- Frequency Coverage= $26.5 \rightarrow 40 \text{ GHz}$
- LO Ref Input = $12.1 \rightarrow 16.6 \text{ GHz} @ 0 \text{ dBm}$
- Uses Tripler to provide an LO of $36.3 \rightarrow 49.8 \text{ GHz}$
- IF Output = 8 -12 GHz @ approx -45 dBm
- CDL 4-stage LNA with $T_N \approx 20^{\circ} K$
- Estimated $T_{Rx} \approx 38^{\circ}K$

Bob Hayward Receiver Engineer

Ka-Band Receiver Major Components

- Polarizer
- LNA
- Post Amp

- Phase-Shifter + Symmetric OMT
- CDL 4-stage InP HEMT
- G = 25 dB, NF = 5dB, $P_0 = +8dBm$
- Spacek Labs (2 x \$2.8K)
- NRAO HMMC-5040 MMIC ? (20-30 & 40-60 GHz, 10 dB)
- Tripler/Mixer
- Spacek (4 x \$5.3K)

	Ka-Rand Noise Budget				
	Component	Temp (K)	L/G (dB)	$\Delta T_{Rx}(K)$	
NRÃO	Feed	300	-0.05	3.474	Expanded Very Large Array
	Vacuum Window	300	-0.05	3.474	
	PS + OMT	18	-0.3	1.287	
	Cal Coupler	18	-0.2	0.848	
	Isolator	18	-0.5	2.196	
	LNA	Tn = 20	+35	25.765	
	Cold WG / Coax	150	-2	0.036	
	Warm WG / Coax	300	-0.5	0.024	
	Post Amp	NF=5 dB	+25	0.462	
	Splitter	300	-4	0.001	
	Mixer	300	-10	0.016	
	IF Cable	300	-3	0.017	
	Total T _{Rx}		\ge	37.6	

Bob Hayward Receiver Engineer

Ku-Band Receiver Block Diagram

- Frequency Coverage= $12 \rightarrow 18 \text{ GHz}$
- LO Ref Input = $12.0^{\dagger} \rightarrow 14.0 \text{ GHz} @ 0 \text{ dBm}$
- Uses Doubler to provide an LO of $23 \rightarrow 28$ GHz
- IF Output = 8 -12 GHz @ approx -45 dBm
- CDL 3-stage LNA with $T_N \approx 10^{\circ}$ K
- Estimated $T_{Rx} \approx 21^{\circ} K$

[†] poor RF-to-IF isolation at 12 GHz

Ku Down-Conversion The Wrong Way

Bob Hayward Receiver Engineer Feed & Front End PDR 12-13 Feb 2002 30

Ku Down-Conversion The Right Way

Bob Hayward Receiver Engineer

- Requires that the 1st LO Synthesizer be able to provide 11.5 GHz
 - Current specification is only 12-20 GHz

Ku-Band Receiver Major Components

- Polarizer
- LNA
- Post Amp

- Phase-Shifter + Symmetric OMT
- CDL 3-stage InP HEMT
- G = 25 dB, NF=3dB, $P_0 = +10dBm$
- TBD (Quinstar 2 x ~\$1K)
- Doubler/Mixer TBD (4 x \$?K)
- We hope to equip EVLA modified antennas with new Ku-Band Rx's as they come out of the Barn but the Transition plan also calls for an interim Up-Converter to allow the old "A-Rack" Ku Rx's to be used if needed (components will eventually be incorporated into new Ku-Band Rx later)

Bob Hayward Receiver Engineer

	Ku-Rand Noise Budget				
	Ku-Dallu Noise Duugei				
	Component	Temp (K)	L/G (dB)	$\Delta T_{Rx}(K)$	
NRÃO	Feed	300	-0.05	3.474	Expanded Very Large Array
	Vacuum Window	300	-0.01	0.692	
	PS + OMT	18	-0.3	1.287	
	Cal Coupler	18	-0.2	0.848	
	Isolator	18	-0.5	2.196	
	LNA	Tn = 10	+40	12.764	
	Cold WG / Coax	150	-2	0.011	
	Warm WG / Coax	300	-0.5	0.007	
	Post Amp	NF=3 dB	+25	0.067	
	Splitter	300	-4	0.000	
	Mixer	300	-10	0.005	
	IF Cable	300	-3	0.005	
	Total T _{Rx}		\ge	21.4	

Bob Hayward Receiver Engineer

X-Band Receiver Block Diagram

- Frequency Coverage= $8 \rightarrow 12 \text{ GHz}$
- LO Ref Input = None
- "IF" Output = approx -45 dBm
- CDL 3-stage LNA with $T_N \approx 10^{\circ} K$ (?)
- Estimated $T_{Rx} \approx 21^{\circ} K$

X-Band Receiver Major Components

- Polarizer
- LNA
- Post Amp

- Phase-Shifter + Symmetric OMT (or Quad-Ridge OMT + Hybrid)
- CDL 3-stage InP HEMT
- G = 25 dB, NF = 2dB, $P_0 = +10dBm$
- TBD (Quinstar 2 x ~\$1K)

X-Band Receiver Package

Receiver Design	Polarizer	Dewar	Receiver
	(inches)	(inches)	(inches)
"Old" X-Band	3.25	7.6	14.0
Current K-Band	13.0	14.5	23.2
X (PS+Sym OMT)	29.3	30.8	39.5
X (Quad-Ridge 2.2 λ)	2.2	< "Old"	≤ "Old"
X (Quad-Ridge 3.2λ)	3.25	= "Old"	= "Old"

Bob Hayward Receiver Engineer

X-Band Polarizer Options

- Phase Shifter + Symmetric Junction OMT:
 - Proven design at K-Band
 - Least-risk option for guaranteed RF performance
 - But very large Rx package (~40 inches)
- Quad-Ridge OMT + Hybrid:
 - Nice & small
 - Will fit inside current Rx footprint
 - But difficult to fabricate & RF performance unknown

What About the Old X-Band Receiver?

- X-Band : VLBA & VLA Rx's are identical
- Nope:
 - Septum Polarizer only spec'd for 8.0-8.8 GHz
 - LNA's, Post Amps, Model 22 (?)
 - DT500 Temp Sensors (now use DT471)
- Maybe:
 - Noise Diode (MC 7084) ???
 - Cal Splitter, Couplers & Isolators ???
 - Hasting Vacuum Sensors (Hastings DV-6R)

NRÃO

IF Cable

Total T_{Rx}

X-Band Noise Budget

		L	1	
Component	Temp (K)	L/G (dB)	$\Delta T_{Rx}(K)$	
Feed	300	-0.05	3.474	Expanded Very Large Array
Vacuum Window	300	-0.001	0.069	
PS + OMT	18	-0.3	1.287	
Cal Coupler	18	-0.2	0.848	
Isolator	18	-0.5	2.196	
LNA	Tn = 10	+40	12.738	
Cold WG / Coax	150	-2	0.011	
Warm WG / Coax	300	-0.5	0.007	
Post Amp	NF=2 dB	+25	0.039	
Splitter	300	-4	0.000	
Mixer	300	-10	0.005	
				1

-3

0.005

20.7

Feed & Front End PDR 12-13 Feb 2002

300

Estimated Receiver IF Output Power

D	BW	T(Sky)	IF Power	
KX	(GHz)	(°K)	(dBm)	
L	1	25	-43.9	
S	2	25	-45.9	
С	4	25	-42.5	
Х	4	25	-42.1	
Ku	4	25	-42.1	
K	4	25	-46.7	
Ka	4	25	-46.1	
Q	4	25	-45.1	

Bob Hayward Receiver Engineer