

Detailed Technical Points

National Research CouncilConseil national de recherchesCanadaCanada

Outline

- FIR filter.
- Recirculation.
- Correlator chip.
- LTA controller.

FIR Filter

- Desirable to implement in FPGA to minimize NRE+risk, and maximize flexibility (baseband input arrangement, 8-bit processing, 2-stage capability).
- Currently, it will not be affordable to implement 1024 taps, 4-bits in an FPGA (requires XC2V4000-5 >\$1000 each).
- However, reducing the number of taps to ~500 should enable it to fit in an XC2V1500-5 @ ~\$344 (Xilinx price projection to 2004).
- But, the budget is \$200/chip...
- So, with 3-bit data, and cosine symmetric, should fit a 511-tap FIR in an XC2V1000-5 @ \$224 ea. (Xilinx price projection to 2004).

FIR Filter

- With XC2V1000-5 chip for a cosine symmetric FIR:
 - Only have ~320 taps with 4 bits (direct realization, 4773 logic slices).
 - This is only 160 taps with 8 bits initial quantization. But, with 4-bit requantization, only 1/8 bandpass required, therefore gang two chips to yield 320 taps. Ganging chips is probably going to be required for narrower band selection, but reduces number of sub-bands available...
 - But, problem with 8-bit initial quantization and 7-bit requantization (because of output data highways). Only 160 taps to produce 1/16 bandpass...not acceptable performance!
 - Solution: 1 pol'n per Station Board? (but still only 320 taps).
 - Solution: smaller LUT? (less reject-band attenuation when we want it).
 - Solution: no 7-bit requantization...just chuck interference sub-band...

FIR Direct Realization: B=4-bits

B. Carlson, 2001-Nov-02

Cosine Symmetric B=3-bits

B. Carlson, 2001-Nov-02

31-tap, poly-phase=4, cosine symmetric FIR

Or...minimum LUT fit

- Fit LUT and adder tree to number of bits used for each tap.
- Requires one design for every set of tap coefficients.
 - *May* be possible/practical with HDL coding of FPGA.
 - But, savings drop as filter narrows!: 1/16 avg=5, 1/64 avg=7, 1/256 avg=10

Or...Gate Array

1023 taps: ~16k logic slices \equiv 4M system gates (Xilinx) \equiv ~32k FF's ~= 200k gates? (PLUS: dual-port memory for sub-band multi-beaming!)

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

NRC · CNRC

B. Carlson, 2001-Nov-02

NRC · CNRC

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

FIR Filter Sub-band Boundary Loss Curves

B. Carlson, 2001-Nov-02

NRC · CNRC

With 1023 taps, ~1 MHz *more* is degraded due to requantization (1.3%) and fringe rotator loss (2.2%). With 511 taps it is ~2.5 MHz more, with 255 taps it is ~4.5 MHz.

B. Carlson, 2001-Nov-02

EVLA Correlator Conceptual Design Review

Clearly not acceptable performance.

B. Carlson, 2001-Nov-02

EVLA Correlator Conceptual Design Review

NRC · CNRC

B. Carlson, 2001-Nov-02

NAC - CNAC

B. Carlson, 2001-Nov-02

Recirculation

- Use (expensive, \$98) DPSRAM ($2 \times 256k \times 18 \equiv 512k \times 18$).
- Good enough for 256k spectral points.
- Requires 1 msec correlator chip readout.
- Can only afford two data and phase paths:
 - Carry phase with data to simplify phase generation.
 - Allows 4 pol'n products on one baseband.
 - Simultaneous non-recirculation correlation.
- Controlled by DUMPTRIG and Recirculation Controller configuration.

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

Mean Timestamp = 47.5 msec

B. Carlson, 2001-Nov-02

DUMPTRIG: 16X recirculation, no pulsar phase binning

Each "recirculation block" must have its own bin to accumulate into. Thus, there are logical blocks/dumps and logical pulsar time/phase bins that map into physical bins in the LTA.

Recirculation Controller FPGA Simplified Block Diagram

Recirculation Controller to Correlator Chip Functional Timing

-								
DUMP_EN control bits:								
CLRS: If set, then the output of the lag chain shift registers is cleared.								
DC2	DC1	DC0	ACTION					
0	0	0	First dump of data into LTA. Just save data					
0	0	0 1 Add data to existing LTA data and save in						
0	1	0	Last dump: add to LTA data; flag LTA bin as ready.					
0	1	1 Speed dump: bypass LTA directly to output.						
1	0	0	Dump data and discard it.					
PB[0:15] Phase bin number for this particular dump.								
HSP[0:3] Harmonic suppression phase. This 4-bit phase has been added to the PHASE data and must be removed by the LTA controller. This suppresses harmonics of strong narrowband interference and can be turned on or off by a control register in the recirculation controller. The correlator chip simply passes this phase data onto the LTA controller.								
RECIRC_BLK and TIMESTAMP are for the data dump that just occurred.								
TIMESTAMP word 0: bits 0 - 31: number of seconds since last epoch. TIMESTAMP word 1: bits 0 - 28: number of clocks since last PPS bits 29 - 31: major epoch.								

B. Carlson, 2001-Nov-02

Correlator Chip

- Plan 2048 complex-lag chip, 4-bit/16-level multipliers, 5-level fringe rotation.
- Specialized interfaces and control for high-performance.
- Knows very little about recirculation...passes information from the Recirculation Controllers onto the LTA controller via the output data frame.
- 16 x 128 complex-lag chip. Each 128 c-lag section is individually controlled and *always* has its own output data frame.
 - Homogeneous, simple, and fast operation.

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

Correlator Chip Output Data Frame:

	28	24	20	16	12	8	4	0	
SYNCH	1 0 1 0 1 0	1 0 1 0	1 0 1 0	1 0 1	0 1 0 1	0 1 0	1 0 1 0 1	0 1 0	W0
	STATUS BITS		Reserve	d	CCID	HSP-Y	HSP-X	Cmmd	W1
	BBID-Y BBID-X	SBID-Y	SBID	D-X	SID-Y SID-X				W2
	L1	A (Phase) BIN		RECIRC_E	BLK-Y	RECIRC_I	BLK-X	W3
			DV	COUNT	-Center				W4
			DV	COUNT	-Edge				W5
			Γ	DATA_B	IAS				W6
			TI	IMESTA	MP-0				W7
			TI	IMESTA	MP-1				W8
			Lag 0-In <u></u>	_phase a	accumulator				W9
	Lag 0-Quadrature accumulator								
	Lag 1-In_phase accumulator								
	Lag 1-Quadrature accumulator								
	Lag 127-In_phase accumulator								W262
	Lag 127-Quadrature accumulator							W263	
SYNCH	0 0 0 1 1 1	0 0 1	1 1 0 0	0 1 1	1 0 0 0	1 1 1	0 0 0 1 1	1 0 0	W264
			F	ParityCh	neck				W265

LTA Controller

- One per corr. chip in FPGA (or, one per 4 corr. Chips)
- Corr. Chip data frame tells the LTA Controller what to do with it, and exactly where to put it.
 - But, LTA Controller is smart enough not to overwrite good data waiting for output.
 - Smart enough for burst operation.
 - "Speed dump" by-passes LTA RAM...straight to output.
- Use 128 MHz readout so cheap, slow-speed-grade FPGA can be used.
- Transmits ready data on local FPDP bus...that flows to output FPDP interface.

B. Carlson, 2001-Nov-02

B. Carlson, 2001-Nov-02

NRC · CNRC

B. Carlson, 2001-Nov-02

LTA Controller FPGA Functional Block Diagram

B. Carlson, 2001-Nov-02

LTA Controller: FPDP Normal Output Data Frame

	28	24	20 16	12	8	4	0			
SYNCH	0 1 0 1 0 1 0	0 1 0 1 0	1 0 1 0 1	0 1 0 1	0 1 0 1	0 1 0 1 0	1 0 1	WO		
	[DATA_BIN#		Reserv	ChipID	CCID	FType	W1		
	BBID-Y BBID-X	SBID-Y	SBID-X	SID-	Y	SID-X		W2		
	STATUS BITS	FRAM	E_COUNT	RECIRC	_BLK-Y	RECIRC_B	SLK-X	W3		
			DVCOUN	IT-Center				W4		
			DVCOUN	IT-Edge				W5		
			Rese	rved				W6		
			TIMEST	AMP-0				W7		
			TIMEST	AMP-1				W8		
		L	.ag 0-In_phase	e accumulato	or			W9		
	Lag 0-Quadrature accumulator									
	Lag 1-In_phase accumulator									
	Lag 1-Quadrature accumulator									
	Lag 127-In_phase accumulator									
	Lag 127-Quadrature accumulator							W263		
SYNCH	0 1 1 1 0 0 0	1 1 1 0	0 0 1 1 1	0 0 0 1	1 1	Board ID		W264		
			CHEC	KSUM				W265		

LTA Controller: FPDP "Speed Dump" Data Frame

	28	24	20 16	12	8	4	0			
SYNCH 0 1) 1 0 1 0	0 1 0 1 0	1 0 1 0 1	0 1 0 1 0	1 0 1	0 1 0 1 0	1 0 1	W0		
STA	TUSBITS	Reserv.	ChiplD	CCID	HSP-Y	HSP-X	FType	W1		
BBID-	Y BBID-X	SBID-Y	SBID-X	SID-Y		SID-X		W2		
	Ph	ase BIN#		RECIRC_	BLK-Y	RECIRC_I	BLK-X	W3		
			DVCOUN	IT-Center				W4		
			DVCOUN	IT-Edge				W5		
			DATA_	BIAS				W6		
			TIMEST	AMP-0				W7		
			TIMEST	AMP-1				W8		
	Lag 0-In_phase accumulator									
	Lag 0-Quadrature accumulator									
	Lag 1-In_phase accumulator									
	Lag 1-Quadrature accumulator									
-										
	Lag 127-In_phase accumulator									
	Lag 127-Quadrature accumulator							W263		
SYNCH 0 1	1 0 0 0	0 1 1 1 0	0 0 1 1 1	0 0 0 1 1	1	Board ID		W264		
			CHE	CKSUM				W265		

This Just In ...

National Research CouncilConseil national de recherchesCanadaCanada

FIR Filter Chip

- AMI semiconductor FPGA-to-gate array conversion (0.18 μm --full production capacity available Dec. 2001).
 - NRE: \$200k (XCV2000E-8 [1024 taps, 4-bit])
 - per chip cost: \$50 (10k piece pricing...5k piece pricing unavailable).
 - 13-16 weeks lead-time for straight conversion.
- Total FIR cost: ~\$430k (save up to \$500k).
- Some loss of flexibility because no longer programmable, but design is still very flexible.

Correlator Chip

- AMI semiconductor could convert FPGA design to 0.18 μ m gate array and scale up the number of lags.
 - Cost: NRE \$200k, \$50 each in 10k quantities.
- Could build prototype correlator chip in FPGA and do a conversion from the FPGA design to gate array.
 - Can test and debug design fully with tools now being purchased.
 - Eliminates need for development using full custom toolsets.
 - Drop-in the full custom chip (footprint compatible).
- The big question is power...is gate array capable???
 - Must get serious answers before any decision is made.
- Potential savings: ~\$300k (over the *budgeted* \$1 million).

Correlator Chip

• THIS PAGE CONFIDENTIAL

High-Speed Cabling

- "Woven Electronics" cable with MDR-80 connector:
 - 3 m: roughly \$100-\$125 each in 3k quantity (GORE: \$268 ea). Save: ~\$400k.
 - 13 m: waiting for quotation (Guess ~\$230). Save: ~\$160k.
 - Will work on cable configuration to meet our requirements...probably flat cable...have access to expanded PTFE as well...not just normal Woven Electronics flat cable.
 - May require "relaxed" Baseline Rack cable routing.

Modified Baseline Rack Cabling

B. Carlson, 2001-Nov-02

Recirculation Memory

- 256k x 36-bit IDT memory now available for ~\$82.
- Could allow *full* performance recirculation on 2 pairs (no phase jitter, 4-bit data).
- Could allow *reduced* performance recirculation on all 8 basebands (8x3 + 8 + 2 = 34 bits), but with 3-bit data (and 4/fs phase jitter?).
- **BUT**: for I/O, requires a 600E-8 FPGA (\$263 vs current \$143 for 400E-8). **Total extra cost: ~\$300k**.

B. Carlson, 2001-Nov-02

Summary

- FIR savings (~\$500k) + cable savings (~\$500k) + correlator chip savings (~\$300k) = \$1.3 million.
- Total project cost \$10.4 million, including \$1.4 million contingency.
- Improved recirculation width costs *additional* ~\$300k.