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Low-Band EVLA Circular Polarizers

Circular to Square
Transition

Quadruple-Ridge OMT
(separates orthogonal
linearly polarized signals)

Quadrature Hybrid

Phase-Matched cables
connecting the OMT to
the hybrid




High-Band EVLA Circular Polarizers

« Circular to Square
Transition

e Sri's corrugated
waveguide Phase Shifter

« 45 Degree offset mode
splitter

« Bagifot OMT (separates
orthogonal linearly
polarized signals)




X-Band Design Challenges

« Two options using conventional technology from existing EVLA
receivers:
— Cascaded Bgifot OMT/ mode splitter/ phase shifter

e This would scale to an impractically large size at X-band

— Direct scaling of the C-Band Polarizer to work at X-Band

* This would result in very small dimensions (20 mil chamfer, 30mil ridge
gap)

* Manufacturing tolerances would be a significant percentage (of the order
of 10%) of the scaled dimensions

* Narrow ridge dimensions would not readily accommodate set
screws/coaxial feeds

* Phase matching to an external hybrid would be extremely difficult due to
the required cable length adjustments (1.9mil/degree at 12GHz)

..



Proposed X-Band OMT Design
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Novel X-Band OMT Design

 The new X-Band OMT uses a
45 degree offset quadruple-
ridge design

« The novel polarizer design
combines concepts from low-
band and high band circular
polarizer designs

« The OMT combines the
function of the ‘45 degree
twist’ mode splitter and Bgifot
OMT used in the high
frequency designs




Novel X-Band OMT Design

» Ridges are offset from the square
waveguide input by 45 degrees

« Square Waveguide Input: 0.947”
x 0.947”

» Detects circularly polarized
signals when used in conjunction
with Sri’'s waveguide phase
shifter

* No external quadrature hybrid or
phased matched cables in this
design
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High-Band EVLA Circular Polarizers

« Circular to Square
Transition

e Sri's corrugated
waveguide Phase Shifter

« 45 Degree offset mode
splitter

« Bagifot OMT (separates
orthogonal linearly
polarized signals)




Proposed EVLA X-Band Circular Polarizer

« Circular to Square
Transition

e Sri's corrugated
waveguide Phase Shifter

« 45 Degree offset
quadruple-ridge OMT




Compact Design of X-Band OMT

« Compact design: OMT Length is 6.12”
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EVLA

X-Band OMT Dimensions

» Chamfer profile similar to C-band
OMT for manufacturability

« 125 mil Ridge Width
« 62 mil Ridge Gap
40 mil Chamfer flat section

» Locator block sets ridge gap and
maintains symmetry




X-Band OMT Dimensions

* The quadruple-ridge waveguide
dimensions:

— optimum impedance at low- 0
band edge

— Eliminate higher order modes E—
« 0.047" semi-rigid coaxial feeds

:

« 62.5mil spaced shorting pins for ‘\::b
impedance matching and TE11 !
trapped-mode resonance 1
suppression

I
I
* One 2-56 set screw for each sorting l// |
pin, with set screws for adjacent /
pins on opposing ridges
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Theory of Operation
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Circularly Polarized Electromagnetic Waves

« LCP (Astronomy Definition)

E(z,t) = E, {5& cos(wt — kyz) + ¥ cos (wt —koz + g)}

E = Eg(2 + j9)e ko
* RCP (Astronomy Definition)

E(zt) = E, {56 cos(wt — kyz) + J cos (wt —koz — g)}

E = Ey(& — j§)e oz
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X

e(zz) = E, {58 cos(wt — kyz) + J cos (wt —koz + g)}

E = Eo(2 +j9)e/*o*




E(z,t) = E, {5& cos(wt — kyz) + J cos (wt —koz + g)}

E = E,(% + j§)e Ikoz
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E(z,t) = E, {:,52 cos(wt — kyz) E-I— y cos (wt —koz + g)}
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E(z,t) = E, {5& cos(wt — kyz) + J cos (wt —koz + g)}

R+ j9)e Tkoz











































LCP signal



Theory of Operation

Apparent motion of electric field vector of circularly polarized electromagnetic
waves as viewed from the receiver (astronomy definition).
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LCP signal RCP signal
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Theory of Operation: Phase Shifter

Direction of Direction of

Prow/ PropW
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LCP signal RCP signal




OMT

Theory of Operation
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Theory of Operation: OMT

Port / Port 2 Port
LCP RCP
P signal signal ~
Ve R / output output \ S
\

.
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LCP signal RCP signal
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HFSS Simulated OMT Performance
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 HFSS simulated modal transmission S-parameter

M magnitude from OMT input to the coaxial OMT output ports
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HFSS Simulated OMT Performance
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Measured X-Band OMT Performance
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Measured OMT Performance

X-Band OMT Transmission - First Prototype
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Measured OMT Performance

X-Band OMT Reflection - First Prototype
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Measured OMT Performance

X-Band OMT Isolation - First Prototype
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Measured OMT Performance

X-Band OMT Transmission - Second Prototype
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Measured OMT Performance

X-Band OMT Reflection - Second Prototype
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Measured OMT Performance

X-Band OMT Isolation - Second Prototype
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Measured Circular Polarization

Performance using Machined Prototype
Phase Shifters
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Machined Phase Shifters

* Prototype X-Band phase
shifters were fabricated
in-house

 Used to evaluate circular
polarization performance
of the new X-Band OMT

« The X-Band OMT was
connected to the phase

shifter and measured
using the PNA




Machined Phase Shifter Measured Performance

Machined Phase Shifter #1: Measured Relative
Phase Shift
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Measured Axial Ratio Performance

Axial Ratio - OMT Proto #2 - Machined Phase Shifter #1
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Circular Polarization Performance

Circular Co-Polarization Response: Septum Polarizer
Input, Quad-Ridge OMT Output (P.S.#1, OMT#2)
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Circular Polarization Performance

Circular Co-Polarization Response: Septum Polarizer
Input, Quad-Ridge OMT Output (P.S.#1, OMT#2)
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Measured Circular Polarization
Performance using Scaled Ku-Band
Phase Shifter Experimental Data
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Scaled Phase Shifter Performance

Measured Ku-Band Phase Shifter Response Scaled to
X-Band
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Measured Axial Ratio Performance using
Scaled Ku-Band Phase Shifter Data

Axial Ratio - OMT Proto #2 - Scaled Ku Band Phase Shifter
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Circular Polarization Performance

Circular Co-Polarization Response: Omt Proto. 2 with

Scaled Ku-Band Phase Shifter
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Circular Polarization Performance

Circular Cross-Polarization Response: Omt Proto. 2
with Scaled Ku-Band Phase Shifter
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Circular Polarization Performance using
Measured OMT Data and Ideal Phase
Shifter
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OMT Contribution to Axial Ratio

Axial Ratio - OMT Proto #2 - Ideal Phase Shifter
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OMT CP Insertion Loss

Circular Co-Polarization Response: OMT Proto. 2
with Ideal Phase Shifter (OMT Insertion Loss)
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OMT CP Isolation

Circular Cross-Polarization Response: Omt Proto. 2
with Ideal Phase Shifter (OMT CP Isolation)
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Conclusions

* Anovel 45 degree offset quadruple-ridge
OMT design is proposed for the new EVLA
wideband X-Band receivers

« Two prototypes have been fabricated and
tested, and exceed specifications by a wide
margin

« The compact design is amenable to cooling
with a Model 22 refrigerator

* Measured results show that the novel design
exhibits good axial ratio and circular
polarization performance

* As with the other EVLA quadruple-ridge OMT
designs, the new X-Band design is focused
on excellent performance, ease of tuning and
manufacturability

« The OMT electromagnetic design is ready for ™%
production -
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