Offset Quadruple-Ridge Orthomode Transducer, Mode Splitter/Combiner

X-Band OMT Design Review October 1, 2009

Gordon Coutts

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Introduction

Low-Band EVLA Circular Polarizers

- Circular to Square Transition
- Quadruple-Ridge OMT (separates orthogonal linearly polarized signals)
- Quadrature Hybrid
- Phase-Matched cablesconnecting the OMT tothe hybrid

High-Band EVLA Circular Polarizers

- Circular to Square
 Transition
- Sri's corrugated
 waveguide Phase Shifter
- 45 Degree offset mode splitter
- Bøifot OMT (separates orthogonal linearly polarized signals)

X-Band Design Challenges

- Two options using conventional technology from existing EVLA receivers:
 - Cascaded Bøifot OMT/ mode splitter/ phase shifter
 - This would scale to an impractically large size at X-band
 - Direct scaling of the C-Band Polarizer to work at X-Band
 - This would result in very small dimensions (20 mil chamfer, 30mil ridge gap)
 - Manufacturing tolerances would be a significant percentage (of the order of 10%) of the scaled dimensions
 - Narrow ridge dimensions would not readily accommodate set screws/coaxial feeds
 - Phase matching to an external hybrid would be extremely difficult due to the required cable length adjustments (1.9mil/degree at 12GHz)

Proposed X-Band OMT Design

Novel X-Band OMT Design

- The new X-Band OMT uses a 45 degree offset quadrupleridge design
- The novel polarizer design combines concepts from lowband and high band circular polarizer designs
- The OMT combines the function of the '45 degree twist' mode splitter and Bøifot OMT used in the high frequency designs

Novel X-Band OMT Design

- Ridges are offset from the square waveguide input by 45 degrees
- Square Waveguide Input: 0.947" x 0.947"
- Detects circularly polarized signals when used in conjunction with Sri's waveguide phase shifter
- No external quadrature hybrid or phased matched cables in this design

High-Band EVLA Circular Polarizers

- Circular to Square
 Transition
- Sri's corrugated
 waveguide Phase Shifter
- 45 Degree offset mode splitter
- Bøifot OMT (separates orthogonal linearly polarized signals)

Proposed EVLA X-Band Circular Polarizer

- Circular to Square Transition
- Sri's corrugated
 waveguide Phase Shifter

 45 Degree offset quadruple-ridge OMT

Compact Design of X-Band OMT

Compact design: OMT Length is 6.12"

X-Band OMT Dimensions

- Chamfer profile similar to C-band
 OMT for manufacturability
- 125 mil Ridge Width
- 62 mil Ridge Gap
- 40 mil Chamfer flat section
- Locator block sets ridge gap and maintains symmetry

X-Band OMT Dimensions

- The quadruple-ridge waveguide dimensions:
 - optimum impedance at lowband edge
 - Eliminate higher order modes
- 0.047" semi-rigid coaxial feeds
- 62.5mil spaced shorting pins for impedance matching and TE11 trapped-mode resonance suppression
- One 2-56 set screw for each sorting pin, with set screws for adjacent pins on opposing ridges

Theory of Operation

Circularly Polarized Electromagnetic Waves

• LCP (Astronomy Definition)

$$\vec{\mathcal{E}}(z,t) = E_0 \left\{ \hat{x} \cos(\omega t - k_0 z) + \hat{y} \cos\left(\omega t - k_0 z + \frac{\pi}{2}\right) \right\}$$

 $\vec{E} = E_0(\hat{x} + j\hat{y})e^{-jk_0z}$

• RCP (Astronomy Definition)

$$\vec{\mathcal{E}}(z,t) = E_0 \left\{ \hat{x} \cos(\omega t - k_0 z) + \hat{y} \cos\left(\omega t - k_0 z - \frac{\pi}{2}\right) \right\}$$

$$\vec{E} = E_0(\hat{x} - j\hat{y})e^{-jk_0z}$$

$$\mathbf{\hat{\mathcal{E}}}(\mathbf{z},\mathbf{t}) = E_0 \left\{ \hat{x} \cos(\omega t - k_0 z) + \hat{y} \cos\left(\omega t - k_0 z + \frac{\pi}{2}\right) \right\}$$

 $\vec{E} = E_0(\hat{x} + j\hat{y})e^{-jk_0z}$

$$\vec{\mathcal{E}}(z,t) = E_0 \left\{ \hat{x} \cos(\omega t - k_0 z) + \hat{y} \cos\left(\omega t - k_0 z + \frac{\pi}{2}\right) \right\}$$
$$\vec{\mathcal{E}} = E_0 (\hat{x} + j\hat{y}) e^{-jk_0 z}$$

Theory of Operation

Apparent motion of electric field vector of circularly polarized electromagnetic waves as viewed from the receiver (astronomy definition).

Theory of Operation: Phase Shifter

LCP signal

RCP signal

Theory of Operation: OMT

Theory of Operation: OMT

HFSS Simulated OMT Performance

 HFSS simulated modal transmission S-parameter magnitude from OMT input to the coaxial OMT output ports

HFSS Simulated OMT Performance

HFSS simulated reflection OMT S-parameters

Measured X-Band OMT Performance

Measured Circular Polarization Performance using Machined Prototype Phase Shifters

Machined Phase Shifters

- Prototype X-Band phase shifters were fabricated in-house
- Used to evaluate circular polarization performance of the new X-Band OMT
- The X-Band OMT was connected to the phase shifter and measured using the PNA

Machined Phase Shifter Measured Performance

Measured Axial Ratio Performance

Circular Polarization Performance

Circular Polarization Performance

Measured Circular Polarization Performance using Scaled Ku-Band Phase Shifter Experimental Data

Scaled Phase Shifter Performance

Measured Axial Ratio Performance using Scaled Ku-Band Phase Shifter Data

Circular Polarization Performance

Circular Polarization Performance

Circular Polarization Performance using Measured OMT Data and Ideal Phase Shifter

OMT Contribution to Axial Ratio

OMT CP Insertion Loss

OMT CP Isolation

Conclusions

- A novel 45 degree offset quadruple-ridge OMT design is proposed for the new EVLA wideband X-Band receivers
- Two prototypes have been fabricated and tested, and exceed specifications by a wide margin
- The compact design is amenable to cooling with a Model 22 refrigerator
- Measured results show that the novel design exhibits good axial ratio and circular polarization performance
- As with the other EVLA quadruple-ridge OMT designs, the new X-Band design is focused on excellent performance, ease of tuning and manufacturability
- The OMT electromagnetic design is ready for production

