

National Radio Astronomy Observatory

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

A Planar OMT for the EVLA

8-12 GHz Receiver Front-End

Michael Stennes October 1, 2009

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Acknowledgement

The author wishes to thank Robert Simon for his help in wire-bonding the assemblies, Mike Hedrick and Dwayne Barker for the machining of OMT housings and chip carriers.

References

- [1] W.A.Tyrrell, "Hybrid circuits for microwaves," PROC. IRE, vol. 35, pp. 1294–1306; November, 1947.
- [2] J. P. Shelton, "Tandem couplers and phase shifters for multi-octave bandwidth", Microwaves, pp. 14-19, April 1965.
- [3] S. B. Cohn, "Shielded Coupled-Strip Transmission Line", Trans. IRE, Vol. 3, Issue 5, October 1955.
- [4] D. Bock, "Measurements of a scale-model ortho-mode transducer", BIMA memo 74, July 7, 1999.
- [5] R. L. Plambeck, G. Engargiola, "Tests of a planar L-band orthomode transducer in circular waveguide", Rev. Scientific Instruments, Vol. 74, No. 3, March 2003.
- [6] P. K. Grimes, et al, "Compact broadband planar orthomode transducer", Electronics Letters, Volume 43, Issue 21 Oct. 11 2007 Pages 1146 1147
- [7] R.W. Jackson, "A planar orthomode transducer", IEEE Microwave and Wireless Components Letters, Volume 11, Issue 12, Dec. 2001 Page(s):483 - 485

OMT Goals

- To provide coupling to two orthogonal linear polarizations, TELL mode in circular waveguide, diameter 2.337 cm.
- Synthesize circular polarization by combining linear polarizations in a 90degree hybrid.
- Provide for noise cal injection.
- Implement and integrate all of these functions in a planar transmission media, in a compact form, such that will fit in the existing VLA 8.0-8.8 GHz dewar and able to be cooled by a CTI model 22 refrigerator.

X-Band Receiver Specifications

• From EVLA Project Book

Frequency Range	8.0-12.0 GHz
Noise Temperature (including feed)	> 20 K
Circular Polarization Axial Ratio	< 1 dB
System Gain	55 dB
Output Power on Cold Sky	-30 dBm
Headroom above 1% Compression Point	> 30 dB
Dynamic Range Above "Quiet Sun" Level	> 30 dB (in Solar Mode)
Circular Polarizer	TBD

Noise Budget

• Cryogenic LNA

Receiver Noise Level Analysis

• OMT Loss = I dB

EVLA X-Band Receiver Level	Analysis	M. J. Stenn	es	5/10/2008								
C:\Documents and Settings\n Linear Polarization	nstennes\D	esktop\EVL	A\Level An	alysis Spread	dsheet		Note: This X-band rece	level analysi eiver, using a	is is for the j a planar ON	proposed ree	design of the	e EVLA
Page 1 of 1		1	2	3	4	5	6	7	8	9	10	11
-	Signal	feed horn	OMT	Couplers (3)	Isolator	Amplifier	SS Coax	lsolator/filte r	Amplifier	Atten	Filter	Atter
Gain (dB)		-0.10	-1.00	-0.02	-0.30	35.00	-1.00	-0.60	16.30	-3.00	-0.50	-3.00
Cum. Gain (dB)		-0.10	-1.10	-1.12	-1.42	33.58	32.58	31.98	48.28	45.28	44.78	41.78
Gain (ratio)		0.977237	0.794328	0.9954054	0.9332543	3162.2777	0.7943282	0.8709636	42.657952	0.5011872	0.8912509	0.5011872
Cum. Gain (ratio)		0.977237	0.776247	0.7726806	0.7211075	2280.3421	1811.3401	1577.6113	67297.666	33728.731	30060.763	15066.07
Noise Figure (dB)		0.103	0.056	0.001	0.016	0.065	0.371	0.619	2.400	3.074	0.516	3.074
Cum. Noise Figure (dB)		0.103	0.160	0.161	0.181	0.268	0.268	0.268	0.270	0.270	0.270	0.270
Noise Figure (ratio)		1.02	1.01	1.00	1.00	1.02	1.09	1.15	1.74	2.03	1.13	2.03
Cum. Noise Figure (ratio)		1.024096	1.037435	1.037743	1.0425305	1.063571	1.0636101	1.0636947	1.0641624	1.0641777	1.0641815	1.0642157
Noise Temp (K)		6.99	3.78	0.07	1.07	4.40	25.89	44.45	213.96	298.58	36.61	298.58
Cum. Noise Temp (K)		6.99	10.86	10.95	12.33	18.44	18.45	18.47	18.61	18.61	18.61	18.62
GkTeB (Watts)		3.77E-13	1.66E-13	3.804E-15	5.527E-14	1.344E-09	6.812E-12	2.137E-12	5.038E-10	8.26E-12	1.801E-12	2.478E-11
GkTeB (dBm)		-94.23714	-97.8053	-114.19724	-102.5755	-58.7157	-81.66735	-86.70227	-62.97724	-80.83002	-87.44514	-76.05881
Cum. GkTeB (Watts)		6.47E-13	6.79E-13	6.801E-13	6.9E-13	3.526E-09	2.808E-09	2.447E-09	1.049E-07	5.259E-08	4.687E-08	2.352E-08
Cum. GkTeB (dBm)		-91.89318	-91.6786	-91.674239	-91.61166	-54.52719	-55.51664	-56.11284	-39.79194	-42.79125	-43.29109	-46.2865 [°]
Tcal (K)	5.00											
Tcal (dBm)	-94.62	-95.69	-96.69	-96.71	-97.01	-62.01	-63.01	-63.61	-47.31	-50.31	-50.81	-53.81
Tmax (K)	310.00											
Tmax (dBm) [GkTmaxB]	-80.68	-77.77	-78.77	-78.79	-79.09	-44.09	-45.09	-45.69	-29.39	-32.39	-32.89	-35.89
Physical Temperature		300	14.6	15	15	15	100	300	300	300	300	300
Bandwidth (GHz)		4	4	4	4	7	24	4	4	4	4	12
T test (K)	10											
P1dB (dBm)						-5			16			
Signal Density (dBm/MHz)		-127.9138	-127.699	-127.69484	-127.6323	-92.97817	-99.31875	-92.13344	-75.81254	-78.81185	-79.31169	-87.07832

Commercially Available Hybrid Couplers

Cost, Performance

90-Degree Hybrid

Manufacuter, Model No.	Freq. (GHz)	Ampl. Bal. (<u>+</u> dB)	Phase Bal. (<u>+</u> deg)	VSWR (x:1)	Rtn Loss (- dB)	Iso (- dB)	I.L. (- dB)	Price USD	Deliv. (weeks)
MCLI HB-6	7.0-12.4	0.5	not spec.	1.30	17.7	18	0.9	229	2
Mac Tech C7206	6.0-12.4	0.5	5.0	1.35	16.5	18		108	8
ET Indust. Q-612-90	6.0-12.4	0.5	4.0	1.35	16.5	20	0.7	425	1
Krytar 1830	2.0-18	0.4	7.0	1.35	16.5	17	1.4	875	5

180-Degree Hybrid

Manufacuter,	Freq.	Ampl.	Phase	VSWR	Rtn	Iso (-	I.L. (-	Price	Deliv.
Model No.	(GHZ)	ваг. (<u>+</u> dB)	ваг. (<u>+</u> deg)	(X:1)	Loss (- dB)	ав)	ав)	USD	(weeks)
MCLI HJ-10	7.0-12.4	0.6	5.0	1.50	14.0	15	0.8	975	4
Miteq, Inc.	8.0-12.4	1.0	8.0	1.5	14.0	15	1.0	375	9
ET Indust. J-612-180	6.0-12.4	0.4	5.0	1.45	14.7	18	1.0	705	1
Krytar 4040124	4.0-12.4	0.4	8.0	1.6	12.7	17	0.9	745	5

YBCO Surface Resistance on MgO

• Compare Copper & YBCO (courtesy Northrop Grumman)

FVIA

New Dewar Top Plate

• Inventor Model

Waveguide Probe Design

• Single-ended approach does not have the required bandwidth

Balanced Probes

• Probes fed 180-degrees out of phase, s11 < -20 dB over 8-12 GHz

Probe Shape

• Radial, Rectangular

Waveguide Probe Design

• CST Model

• Schematic

• 90Degree Hybrid

OMT Probes: Prototype

• Copper tape supported by Ecco-Foam PS-102

Probe Design

• Measured Return Loss & CST Prediction

180-Degree Hybrid Coupler

- Modified "Rat Race" Circuit
- MWO Linear Circuit Model

180-Degree Hybrid: Design

• 3D EM model, CST

180-Degree Hybrid Coupler

• CST Model: Amplitude Balance

180-Degree Hybrid: Amplitude Balance (Model) M. Stennes 1/21/2009

180- Degree Hybrid Coupler

• CST Model: Phase Balance

90-Degree Hybrid Design

• Backward wave coupler, $\lambda/4$ length

90-Degree Hybrid Coupler Design

• Tandem pair, 8.3 dB coupling

90- Degree Hybrid Coupler Design

• Cut and twist coupled lines

90-Degree Hybrid Coupler Design

• Layout of twisted tandem couplers

90-Degree Hybrid: CST Model

• Wire bond locations

90-Degree Hybrid Chip

• Inventor Model

90-Degree Hybrid: Measured Performance

• Amplitude Balance

Frequency, GHz

90-Degree Hybrid: Measured Performance

Phase Balance

90-Degree Hybrid: Measured Performance

• Isolation

90-Degree Hybrid: Measured Performance

Reflection Coefficient

Microstrip Crossover, New Design

Microstrip Crossover

• Measured Results

Receiver Noise Temperature Prediction

• Comparison between Copper and YBCO

EVLA

Receiver Noise Temperature Predictions

• MMIC LNA Option

OMT Circuit Layout

Chip Mounting

50 K Waveguide Section

OMT with Sliding Backshort

Cryostat

• Inventor Model: Second Stage Cold Plate

Cryostat

• Inventor Model: First Stage Cold Plate

EVLA

Vacuum Window, Thermal Transitions

• Input WG

WG Probe Interface to Microstrip

• Microstrip

MMIC Option

• MMIC LNA

MMIC Performance

Measured Data from Sandy Weinreb

Gold/Alumina OMT

Gold/Alumina OMT

- Linear vs. Circular Polarization
- Thermal Gap Open, Closed

Receiver Noise Temperature, Linear/Circular Pol, Open/Closed Thermal Gap

YBCO/MgO OMT

• YBCO/MgO OMT

EVLA X-Band Receiver Noise HTS Planar OMT

Receiver Noise, HTS OMT

• 3 GHz IF

This data was taken using a power meter, measuring 3GHz IF, filtered through a tunable microwave preselector. Receiver configuration is HTS OMT, old TRW cryo isolators.

	Thot	Tcold				
	298	3 81	L			
	Phot	Pcold(dB				
f (GHz)	(dBm)	m)	Y(dB)	Y	Trx (K)	
8	3 -24.93	3 -29.17	7 4.24	2.654606	50.14908	
8.1	L -25.05	5 -29.79	9 4.74	2.978516	28.67814	
8.2	2 -23.89	9 -28.96	5 5.07	3.213661	17.02768	
8.3	3 -24.12	1 -29.22	2 5.11	3.243396	15.72835	
8.4	-22.92	1 -28.19	5.28	3.372873	10.45032	
8.5	-22.9	-28.22	2 5.36	3.435579	8.09584	
8.6	5 -23.22	L -28.52	2 5.31	3.396253	9.558061	RCP
8.7	-23.52	2 -28.62	2 5.1	3.235937	16.05105	
8.8	3 -24.22	2 -29.11	L 4.89	3.083188	23.16727	
8.9	-24.63	3 -29.55	5 4.92	3.10456	22.10946	
9) -25.14	4 -30.1	L 4.96	3.133286	20.72102	
9.5	5 -24.98	3 -30.03	3 5.05	3.198895	17.68593	
10) -26.05	5 -30.84	4.79	3.013006	26.79898	
10.5	-27.67	7 -32.04	4.37	2.735269	44.05268	
11	-29.04	4 -32.56	5 3.52	2.249055	92.7314	
11.5	-32.63	3 -35.8	3.17	2.074914	120.8767	
12	-31.32	2 -35	5 3.68	2.333458	81.73478	
12.5	5				-	

Gold/Alumina OMT

Trx as a Function of OMT Loss

• Trx vs OMT Loss

Chip Resistor Return Loss

• Chip Resistor 0210, s11

OMT Input Return Loss

• Full OMT vs. Chip Resistor Terminated Probes

OMT Return Loss

OMT Output Return Loss

• S22, S33

RCP & LCP Output Return Loss Au/alumina, Sept 12 2009

YBCO OMT Loss

• SS Coax Loss, and 3 dB Coupling Loss Removed from Measured Data

Closing the 15K/50K WG Thermal Gap

• Au/Alumina OMT, Room Temperature Measurements

EVLA

HTS Wafer Artwork

• 3-Inch Diameter

EVLA

Microstrip Line Loss Measurement

• Fixture

Cost Estimates

• Gold/Alumina

Item	Cost (for small quantities) USD	Cost (for 30+) USD
Microstrip circuits	325.	
Gold plating of chip carriers	Done at NRAO CDL	Done at NRAO CDL
G10 fiberglass	50.	
Brass, aluminum blocks	45.	
Kovar sheet	25.	
Totals	445.	

• YBCO/MgO

Item	Cost (for small quantities) USD	Cost (for 30+) USD
Microstrip circuits	2500.	
Gold plating of chip carriers	600.	Done at NRAO CDL
G10 fiberglass	50.	
Brass, aluminum blocks	45.	
Kovar sheet	25.	
Totals	3220.	

Microstrip Line Loss, T= 15K

- YBCO/MgO, 4.7 cm Length
- 54% of the OMT's Path Length

Insertion Loss of 4.7cm Length of YBCO 50-Ohm Microstrip Line

Microstrip Line Loss,T= I5K

• Removing effect of s I I

Insertion Loss of 4.7cm Length of YBCO 50-Ohm Microstrip Line

Signal Loss Through Fixturing

• Warm and Cold

Loss Through Au/Alumina Microstrip

• Warm compared to Cold, Includes Fixture Losses

EVLA

Microstrip Line Loss, Gold vs.YBCO

• Includes Fixture Losses

EVLA

EVLA

Earlier Loss Measurement: Au/Alumina

• T=15K

Microstrip Line Loss: Gold vs.YBCO

• December 2008

YBCO 50-Ohm Microstrip Line, Length = 4.7cm M. Stennes 12/10/08

Frequency (GHz)

EVLA

Microstrip Line Loss: Gold vs.YBCO

• December 2008

YBCO 50-Ohm Microstrip Line, Length = 4.7cm M. Stennes 12/10/08

Frequency (GHz)

EVLA

EVLA

Conclusions

- OMT loss measurements are consistent with receiver noise (Trx) levels
- Receiver noise temperatures of 25K for Gold/Alumina were achieved. Cooled microstrip loss, and other data indicate that Trx = 15K may be possible
- YBCO/MgO OMT may offer lower loss for X-band. 8K to 9K demonstrated over narrow band.
- A significant design flaw was identified; waveguide thermal gap (15K/50K) must be redesigned.
- A lower-loss OMT may be realized, by implementing a single-ended probe design, and/or eliminating the 90-degree hybrid coupler.
- OMT input return loss of -15 dB is predicted, but not demonstrated
- OMT polarization isolation is limited by the microstrip crossovers (-25 dB) and 90-degree hybrid (-19 dB)

Possible Improvements

- Reduce OMT loss by:
 - elimination of wire bonds
 - Full closure of 15/50K thermal gap
- Improve OMT isolation by optimizing microstrip crossover design, and by providing amplitude and phase predistortion to compensate for 90-degree hybrid's finite isolation (-19 dB)
- Use single-ended waveguide probe, eliminate 180-degree hybrid
- Reduce receiver noise temperature with use of integrated MMIC LNA
- Improve OMT return loss through:
 - Linear system modeling and fixed tuning
 - Variable tuning with real-time s11 measurement
 - Wafer probing and fixed tuning

Possible Improvements (continued)

• Total elimination of the 15K/50K thermal gap, having just one gap for 15K/300K.

