





## EVLA Front-End CDR

## L-Band (1-2 GHz) EVLA Receiver

Lisa Locke



## Contents



- Interim L-Band Receiver
  - Block diagram, photos, axial ratio, Trx, Gain, Input return loss
- Prototype L-Band Receiver
  - Block diagram, LNA info, construction, thermal hurdles, window selection, Trx, Gain, axial ratio







## EVLA Interim L-Band Photos





EVLA F



Lisa Locke



## L-Band SN 32 - Antenna 14 Interim L-Band Performance



(RHH : 17 April 2006)





## Effect of LNA Input Return Loss on Axial Ratio (L#21)





#### EVLA Front-End CDR - EVLA L-Band

Receiver 24 April 2006

#### Axial Ratios on EVLA Interim L-Band Receivers







# EVLA L-Band Design

Lisa Locke



## EVLA L Band

**Block Diagram** 



Warm RF Box

Cooled Dewar



Lisa Locke



- In absence of a broadband cryogenic isolator...
- Split LNAs allows for future cooled filter if RFI situation warrants
- Compromise between low noise and dynamic range

- Balanced low noise block
  - provides decent S11 to prevent reflections through OMT & S22 to possible filter
  - two InP stages give 4K noise temp.
- Balanced high power block
  - provides good S11 to possible filter
  - 2 stage commercial HFET gives 20K noise temp.



## CDL L-Band LNA Low-Noise & High-Power



**Balanced Amplifier Gain Blocks** 



Lisa Locke



# Estimated EVLA L-Band $T_{Rx}$ , Output Power & Headroom

Best Case - With Low-Loss Vacuum Window

and OMT Cooled to 50°K



| EVLA L-Band Rx        | P (1dB) | P (1%) | Temp  | NF/C | Loss/Gain | Loss/Gain | Delta T | Trx   | BW    | Pnoise      | Pnoise  | Headroom |
|-----------------------|---------|--------|-------|------|-----------|-----------|---------|-------|-------|-------------|---------|----------|
| (RHH : 28 March 2006) | (dBm)   | (dBm)  | (K)   | (dB) | (dB)      | (linear)  | (K)     | (K)   | (MHz) | (dBm)       | dBm/GHz | (dB)     |
|                       |         |        |       |      |           |           |         |       |       | for Tsky of |         |          |
|                       |         |        |       |      |           |           |         |       |       | 12.0        |         |          |
|                       |         |        |       |      |           |           |         |       |       | (K)         |         |          |
|                       |         |        |       |      |           |           |         |       |       |             |         |          |
|                       |         |        |       |      |           |           |         |       | 2000  | -94.8       | -97.8   |          |
| Weather Window        |         |        | 300   |      | -0.02     | 0.9954    | 1.385   |       |       | -94.3       |         |          |
| Feed Horn             |         |        | 300   |      | -0.05     | 0.9886    | 3.490   |       |       | -93.4       |         |          |
| Vacuum Window         |         |        | 300   |      | -0.001    | 0.9998    | 0.070   |       |       | -93.4       |         |          |
| Quad-Ridge OMT        |         |        | 50    |      | -0.1      | 0.9772    | 1.184   |       |       | -93.2       |         |          |
| Coax Cable            |         |        | 32.5  |      | -0.05     | 0.9886    | 0.391   |       |       | -93.1       |         |          |
| Hybrid Phase Shifter  |         |        | 15    |      | -0.2      | 0.9550    | 0.744   |       |       | -93.2       |         |          |
| Coax Cable            |         |        | 15    |      | -0.05     | 0.9886    | 0.191   |       |       | -93.2       |         |          |
| Cal Coupler (IL)      |         |        | 15    |      | -0.2      | 0.9550    | 0.788   |       |       | -93.2       |         |          |
| Cal Coupler (Branch)  |         |        | 300   | -30  | 0         | 1.0000    | 0.300   |       |       | -93.1       |         |          |
| Isolator              |         |        | 15    |      | 0         | 1.0000    | 0.000   |       |       | -93.1       |         |          |
| Balanced LNA (16-20 d | -5      | -17    | 4     |      | 18        | 63.0957   | 4.668   | 13.21 |       | -74.2       |         | 57.2     |
| Coax Cable            |         |        | 15    |      | -0.1      | 0.9772    | 0.006   |       |       | -74.3       |         |          |
| Transfer Switch       |         |        | 15    |      | 0         | 1.0000    | 0.000   |       |       | -74.3       |         |          |
| Filter Hi-Q/Notch     |         |        | 15    |      | 0         | 1.0000    | 0.000   |       |       | -74.3       |         |          |
| Coax Cable            |         |        | 15    |      | 0         | 1.0000    | 0.000   |       |       | -74.3       |         |          |
| Balanced LNA (16-20 d | 13      | 1      | 20    |      | 18        | 63.0957   | 0.379   |       |       | -56.3       |         | 57.3     |
| Stainless Steel Coax  |         |        | 157.5 |      | -2        | 0.6310    | 0.028   | 13.62 |       | -58.3       |         |          |
| Coax Cable            |         |        | 300   |      | -1        | 0.7943    | 0.037   |       |       | -59.3       |         |          |
| Switch                |         |        | 300   |      | 0         | 1.0000    | 0.000   |       |       | -59.3       |         |          |
| Isolator              |         |        | 300   |      | -0.5      | 0.8913    | 0.022   |       |       | -59.8       |         |          |
| Filter (0.8-2.2 GHz)  |         |        | 300   |      | -1        | 0.7943    | 0.052   |       | 1400  | -62.3       |         |          |
| Post-Amp              | 15      | 3      | 229.6 | 2.5  | 30        | 1000.0000 | 0.194   |       |       | -32.3       |         | 35.3     |
| Isolator              |         |        | 300   |      | -0.5      | 0.8913    | 0.000   | 13.93 |       | -32.8       |         |          |
|                       |         |        |       |      |           |           |         |       |       |             |         |          |



# Estimated EVLA L-Band $T_{Rx}$ , Output Power & Headroom

<u>Worst Case</u> - With Lossy Vacuum Window and

*OMT Cooled to only 100°K* 



| EVLA L-Band Rx        | P (1dB) | P (1%) | Temp  | NF/C | Loss/Gain | Loss/Gain | Delta T | Trx   | BW    | Pnoise      | Pnoise  | Headroom |
|-----------------------|---------|--------|-------|------|-----------|-----------|---------|-------|-------|-------------|---------|----------|
| (RHH : 28 March 2006) | (dBm)   | (dBm)  | (K)   | (dB) | (dB)      | (linear)  | (K)     | (K)   | (MHz) | (dBm)       | dBm/GHz | (dB)     |
|                       |         |        |       |      |           |           |         |       |       | for Tsky of |         |          |
|                       |         |        |       |      |           |           |         |       |       | 12.0        |         |          |
|                       |         |        |       |      |           |           |         |       |       | (K)         |         |          |
|                       |         |        |       |      |           |           |         |       |       |             |         |          |
|                       |         |        |       |      |           |           |         |       | 2000  | -94.8       | -97.8   |          |
| Weather Window        |         |        | 300   |      | -0.02     | 0.9954    | 1.385   |       |       | -94.3       |         |          |
| Feed Horn             |         |        | 300   |      | -0.05     | 0.9886    | 3.490   |       |       | -93.4       |         |          |
| Vacuum Window         |         |        | 300   |      | -0.1      | 0.9772    | 7.101   |       |       | -92.0       |         |          |
| Quad-Ridge OMT        |         |        | 100   |      | -0.1      | 0.9772    | 2.422   |       |       | -91.6       |         |          |
| Coax Cable            |         |        | 60    |      | -0.05     | 0.9886    | 0.739   |       |       | -91.6       |         |          |
| Hybrid Phase Shifter  |         |        | 20    |      | -0.2      | 0.9550    | 1.015   |       |       | -91.6       |         |          |
| Coax Cable            |         |        | 20    |      | -0.05     | 0.9886    | 0.261   |       |       | -91.6       |         |          |
| Cal Coupler (IL)      |         |        | 20    |      | -0.2      | 0.9550    | 1.075   |       |       | -91.7       |         |          |
| Cal Coupler (Branch)  |         |        | 300   | -30  | 0         | 1.0000    | 0.300   |       |       | -91.6       |         |          |
| Isolator              |         |        | 20    |      | 0         | 1.0000    | 0.000   |       |       | -91.6       |         |          |
| Balanced LNA (16-20 d | -5      | -17    | 4     |      | 18        | 63.0957   | 4.776   | 22.56 |       | -73.0       |         | 56.0     |
| Coax Cable            |         |        | 20    |      | -0.1      | 0.9772    | 0.009   |       |       | -73.1       |         |          |
| Transfer Switch       |         |        | 20    |      | 0         | 1.0000    | 0.000   |       |       | -73.1       |         |          |
| Filter Hi-Q/Notch     |         |        | 20    |      | 0         | 1.0000    | 0.000   |       |       | -73.1       |         |          |
| Coax Cable            |         |        | 20    |      | 0         | 1.0000    | 0.000   |       |       | -73.1       |         |          |
| Balanced LNA (16-20 d | 13      | 1      | 20    |      | 18        | 63.0957   | 0.387   |       |       | -55.0       |         | 56.0     |
| Stainless Steel Coax  |         |        | 160   |      | -2        | 0.6310    | 0.029   | 22.99 |       | -57.0       |         |          |
| Coax Cable            |         |        | 300   |      | -1        | 0.7943    | 0.038   |       |       | -58.0       |         |          |
| Switch                |         |        | 300   |      | 0         | 1.0000    | 0.000   |       |       | -58.0       |         |          |
| Isolator              |         |        | 300   |      | -0.5      | 0.8913    | 0.022   |       |       | -58.5       |         |          |
| Filter (0.8-2.2 GHz)  |         |        | 300   |      | -1        | 0.7943    | 0.053   |       | 1400  | -61.1       |         |          |
| Post-Amp              | 15      | 3      | 229.6 | 2.5  | 30        | 1000.0000 | 0.199   |       |       | -31.0       |         | 34.0     |
| Isolator              |         |        | 300   |      | -0.5      | 0.8913    | 0.000   | 23.30 |       | -31.5       |         |          |
|                       |         |        |       |      |           |           |         |       |       |             |         |          |

#### Lisa Locke



#### EVLA L-Band Polarizer

- Quad-ridge OMT + 90 degree hybrid
- Increased frequency range
- Improved performance
- Details discussed by Paul Lilie







Lisa Locke



Construction

- Modify a VLA L-Band dewar to evaluate OMT performance
  - reused mounting plate bottom can
  - new can over OMT
  - 350 fridge replaced
    with 1020 from A-rack







Lisa Locke



#### Vacuum Windows

- Blue Eccofoam
  - classic foam used in older receviers
  - RF: excellent
  - strength: good
  - thermal: excellent
  - has been deteriorating, replacing with Zotefoam
- Zotefoam HD30
  - used in smaller (L,C) windows for years
  - RF: excellent
  - strength: good
  - thermal: excellent
- Nidacore
  - new honeycomb material
  - RF: moderate
  - strength: excellent
  - thermal: poor











Lisa Locke





Vacuum Window Test



Dewar Vacuum Window Nidacore Honeycomb Plug vs. Zotefoam Plug alone

Effect on TRx

L-Band (SN 11) Measurements with Nidacore Honeycomb Plug using Lilie Noise Standard (Off/On = 100/675 K) 14 Feb 2006



— Double 0.5" Honeycomb Plug



## Dewar Thermal Designs VLA vs EVLA







**Thermal Progress** 



- 50K stage cools to 99K
- 15K stage cools to 20K
- Insulated 50K radiation shield with veil/space blanket layers
- Added Zotefoam to inside of OMT to add thermal insulation.
- Tie OMT to 50K instead of 15K stage
- Replace Nidacore window with Zotefoam









OMT Temp vs Trx Window Loss vs Trx







### **EVLA L-Band Prototype** RF through Thermal Gap





- A "bump" was caused by RF leaking
- Resonant cavity conditions inside
- Solved with strip of absorber around

L Band Prototype with Narrowband Hot/Cold Test Load showing thermal gap resonance at 1300 MHz (LR016308.508)





Effect of LNA Input Return Loss

Expanded Very Large Array

#### on Axial Ratio





#### Prototype vs Interim L#32 Preliminary Results with Narrowband Hot/Cold Test Load





- RCP and LCP very similar results
- Interim receiver has physical temperature 45K/15K
- Prototype 99K/15K, needs to be reduced
- Response of receiver below 1300 MHz unknown due to narrowband test OMT



## Conclusions



- OMT under continued testing
  - between 1.3 1.8 GHz, performance acceptable
  - at band-edges performance to be tested
- Second OMT almost ready for use as a test fixture instead of narrow band OMT
- Re-evaluate dewar thermal design to reduce OMT physical temperature from 100K
- Reduce Trx from 20K to 15K