PASEO Meeting

July 15-16, 2010, Socorro - NM

EVLA Specific Algorithms R&D

S. Bhatnagar

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Overview

- Outline of the talk
 - Overview of the issues requiring new algorithms research
 - Wide-band imaging + off-axis effects
 - Status and plan for algorithms R&D (EVLA Memo #139 & #122)
 - Progress so far
 - Various algorithmic dependencies
 - Staged deployment recognizing the available resources
 - Connection between algorithms R&D and HPC
 - Issues and challenges: Research, required software development, etc.
- Conclusions
 - Initial algorithms for wide-band and wide-field imaging developed
 - Work required for testing and then deployment in production software
 - Begin using HPC frame work to reduce run-time and related algorithmic issues
 - Begin exploring full Stokes imaging and calibration

Development & testing progress tied to status of EVLA commissioning

Algorithms R&D

- New algorithm are required to realize the EVLA project goals
 - However some scientific results possible with existing software tools as well
- New scientific capabilities with large bandwidths
 - Unprecedented sensitivity
 - High resolution wide-band spectroscopy
 - Spectral index imaging at unprecedented sensitivity and detail
 - Rotation Measure (RM) Synthesis
- Algorithms R&D is resource limited
 - Personal assigned on an ad-hoc basis by the NRAO management
 - Currently seconded to the ASC, NM operations
 - Current focus on EVLA specific problems
 - Many areas of overlap with ALMA

Possible change of focus/emphasis on the longer term

Imaging issues

- Project requirements: Full beam, full bandwidth, full Stokes imaging with the EVLA
- Algorithmic R&D requirement:
 - Wide-band issues (2:1 Bandwidth ratio)
 - Accounting for the frequency dependence of the sky-emission (MFS)
 - Polarization dependence of the sky (RM-Synthesis)
 - Wide-field issues
 - PB-rotation with Parallactic Angle
 - First order: Frequency dependence of the PB
 - Second order: Polarization dependence of the PB
 - Full-field, wide-band issues
 - Instrumental: PB Rotation, frequency & polarization dependence

• Sky: Frequency and polarization dependence of the sky

Calibration issues

- Algorithmic R&D requirement:
 - On-axis (Direction independent)
 - wide-band bandpass calibration
 - Time varying bandpass
 - Frequency dependent polarization calibration
 - Time varying component
 - Off-axis (Direction dependent)
 - Frequency dependence of the PB
 - Time dependence of the PB: Antenna pointing errors, shape,...
 - Ionosphere (L/S Band), atmosphere
 - Beam polarization
 - RFI
 - Auto-/semi-automatic flagging
 - Weak RFI: research problem

Plan

- EVLA Memos
 - EVLA Memo #122 (Owen, 2008), #139 (Bhatnagar, 2009)
- Wide-band, narrow-field (Stokes-I)
 - Decouple sky frequency dependence from instrumental (PB)
 - MS-MFS: Develop and test (Rao Venkata's thesis (2010))
- Wide-band, narrow-field, full-Stokes
 - RM-Synthesis (Kogan et al.)
- Wide-band, wider-field
 - PB effects dominate
 - A-Projection algorithm to correct for time- and freq- dependence
 - Extensions for full-polarization mode
 - Mosaicking: Overlap with ALMA (Golap, Bhatnagar,...)
- Full sensitivity, full-field, full-polarization
 - Combine: MS-MFS + A-Projection + RM-Synthesis

Wideband Effects

- Frequency dependence
 - PB scaling with frequency, Sky spectral index variations

Wide-band Power Pattern

Static-PB main-lobe spectral index

Time varying effects

- Time dependence of the PB
 - Rotation with Parallactic angle is the dominant effect
 - In-beam maximum error ~10% point: DR limit fewx10000:1
 - Errors in main-lobe, due to strong sources in the first side-lobes: 3x-5x higher
 - Less of a problem for single-pointing observations at >C band
 - But similar errors for mosaicking at higher frequencies

Limits due to bandwidth

- Wide-band effects
 - Instrumental: PB scales by 2X is strongest error term
 - Sky: Varying across the band needs to be solved for during imaging (MFS)
- Time varying effects
 - PB rotation with time
 - Pointing errors
 - Beam polarization
- Errors due to wide-band and time-varying direction dependent effects are of similar order
 - Imaging dynamic range to ~ few x 10^{3-4}
- Improved spectral index imaging, RM-imaging not possible without algorithms for wide-band issues

Instrumental effects

• Time, frequency and polarization dependence of the PB

Sources of time variability

- PB rotationally asymmetricPB rotation with PA
- •PB folation with frague
- •PB scaling with frequency
- •Antenna pointing errors

Progress (follow-up from last year)

- Approach to problem solving:
 - Algorithms R&D (SNR per DoF, error propagation, HPC, ...)
 - Proof-of-concept test via realistic simulations
 - Implementation & testing with real data
- Wide-band imaging MS-MFS [Sci. Testing]
 - Major part of U. Rao Venkata's thesis: [Done! (2010)]
- Wide field imaging
 - W-Projection algorithm: [In use/published, IEEE, 2008]
 - PB corrections
 - Basic algorithm: AW-Projection algorithm: [Testing/published, A&A, 2008]
 - PB freq. Scaling
 - All-Stokes PB correction
 - Pointing SelfCal:

[In progress]
[Initial investigations]
[Sci. Testing]
[Bhatnagar et al., EVLA Memo 84]

Papers in preparation

Correction for pointing errors and PB rotation: Narrow band

After correction

Pointing SelfCal

L-band: Stokes-I before correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

EVLA

L-band: Stokes-I after correction

- 3C147 field at L-Band with the EVLA
- Only 12 antennas used
- Bandwidth: 128 MHz
- ~7 hr. integration
- Dynamic range: ~700,000:1

Full field: Stokes-I

L-band: Stokes-V before correction

L-band: Stokes-V after correction

Extending MFS: Basics algorithm

Application to M87

NRAO

Wide-field, wideband: PB corrections

3C286 Stokes-I

(Rao Venkata, Bhatnagar)

INRAC

ΗV

Computing & I/O load: Single node

- Tests done with 100 GB, 512 Channels, 4K x 4K x 512 Stokes-I imaging
- Conclusions:
 - Sequential processing is I/O dominated
 - Image deconvolution is the most expensive step
 - Most expensive part of imaging is the Major Cycle
 - Exploit data parallelism as the first goal
- Where possible, data size reduction with integration in time and/or frequency may allow processing on a high-end desktop
- Total effective I/O \sim 1 TB (due to iterations) details in the next talk

• A wide range of imaging and calibration challenges

Deep imaging, of otherwise simple "blank" fields

Wide-band high sensitivity imaging of fields with complex emission

• A wide range of imaging and calibration challenges

Deep-imaging; of otherwise simple - "blank" fields

Wide-band high sensitivity imaging of fields with complex emission

- Demands of production-line software (casapy) and software for R&D are incompatible
 - Stability vs flexibility
 - Regular user needs vs. advanced user needs
- Need for better integration of algorithm R&D needs and production software (CASA/casapy) short and long term development plan
 - Algorithms R&D software needs
 - Support software (e.g. visualization, build-system, etc.) needs often different
- Need more developers
 - Need more scientists enthusiastic about using/learning new tools, techniques and methods

Currently "testers heavy" situation

- Need advanced users/testers with skills and willingness to test new code/algorithms
 - Skill set/expertise/experience level of testers of R&D code very different from those for testing production code
- Need to better align CASA development plan, algorithms development plan and the project plan for enabling scientific capabilities
 - E.g. pipeline processing vs manual processing/visualization
- Improve accuracy and speed of information dispersal to the community

