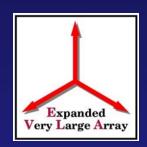


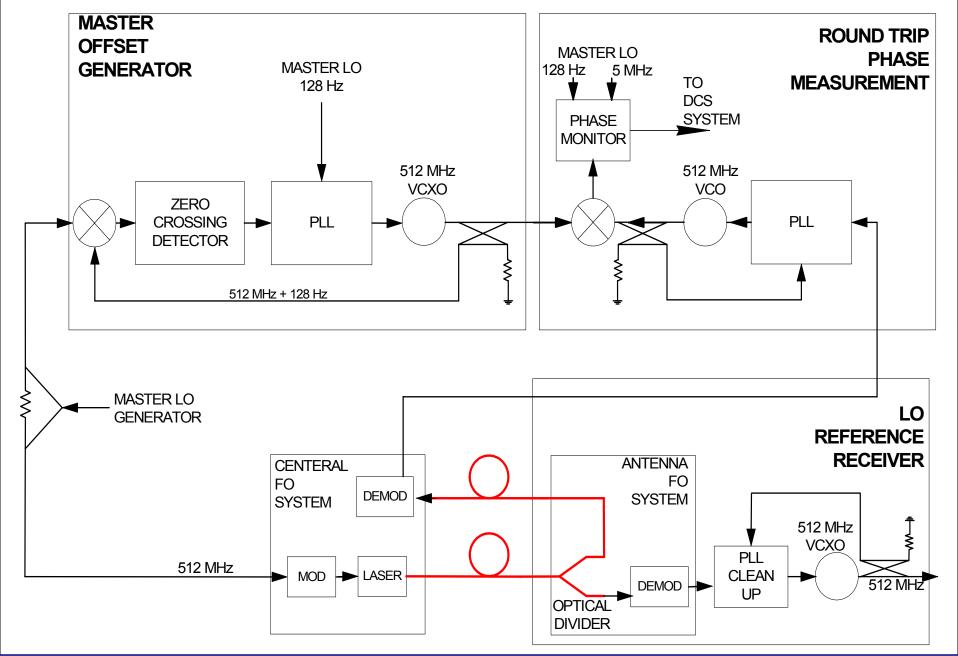
LO/IF System

Terry Cotter
LO/IF Group Leader

Introduction

- The LO/IF system modules
 - Progress
 - Cost
 - Schedule
 - Issues


Issues


- Solar Attenuation
- PCAL removed
- Construction using new technologies
- PIN diode switches
- Broadband components for narrow band apps
- Sampling Phase detector
- Frequency Tuning steps
- Transition
- Round Trip Phase

Round Trip Phase System

- Under design
- Includes the RTP Measurement module
- Includes the LO Offset generator

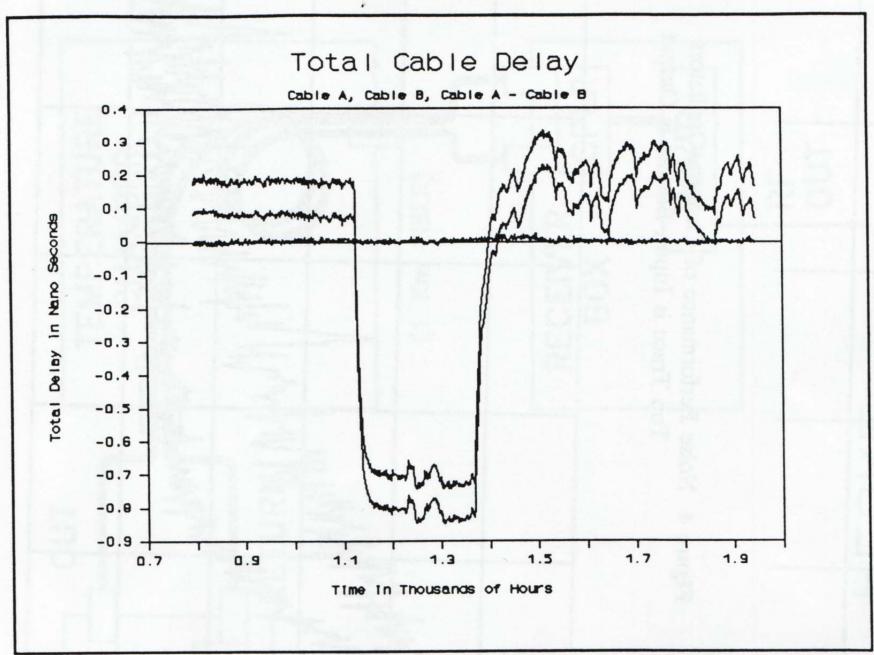


Figure 2 Total Delay for Two Fibers for 48 Days

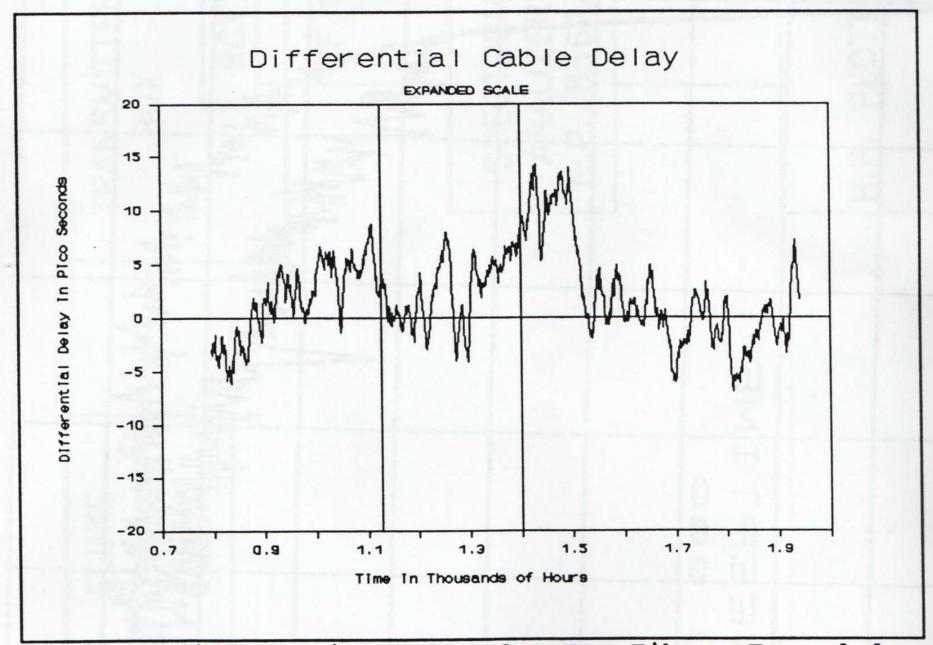
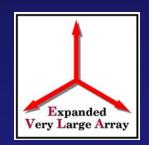
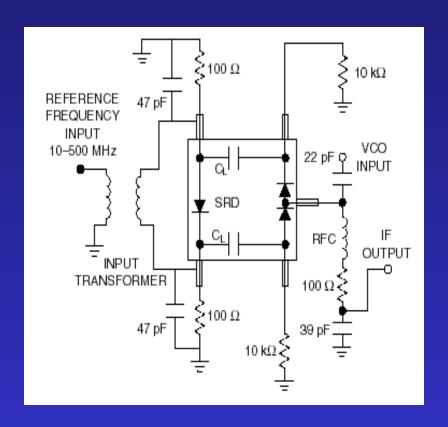
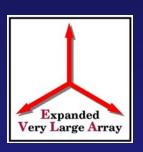




Figure 3 Differential Delay for Two Fibers Expanded Scale

Sampling Phase Detector



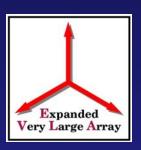
- Advantage: Much less expensive than comb generator and mixer
- Advantage: Phase v.
 Temp stable
- Disadvantage:
 Design-Test-Mfg.
 cycle

4096 Synthesizer

- Last LO before digitization to convert IF to the 1-2 GHz range
- Used with high resolution sampler
- Tuning is 4096 +/- 10 MHz in 1 Hz steps
- Tuning needed for transition
- Initial design complete
- Initial board layout is complete


4096 Synthesizer

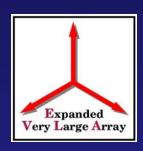
- Need to evaluate filters from different vendors.
- Parts are here or on order
- Testing to start 7/02
- Cost in quantity either 1.5K or 1K each depends on filters (2 per antenna in same module)
- Not in original budget


8-Bit Digitizer

- Boards received from vendor.
- Checkout in progress.
- Design completed.
- Power supply and M/C interface finished.
- \$4k per sampler, 4 per antenna.
- Interleaved design

High Speed Digitizer

- Uses ALMA digitizer microcircuit.
- Development of EVLA board starts in '03
- Microcircuit cost \$1.2k.
- Board cost similar to 8-bit digitizer.
- 8 per antenna.
- Must buy all chips at one time


DTS Module

- Includes both types of samplers
- Includes formatter (ALMA) (FO Budget)
- Includes lasers and modulators (FO Budget)
- Budgeted cost 7.8K each (7/01)*
- Current estimated cost 10K each (6/02)*
- *LO/IF portion only

IF Downconverter

- -Converts 8-12 GHz IF to two 2-4 GHz baseband IF's for 3-bit, 4GHz sampling
- -Converts 8-12 GHz IF to one 1-2 GHz baseband IF's for 8-bit, 2GHz sampling
- Bench Integration: 7 October 02

IF Downconverter

- All parts on order or in house
- Total Power Detector Boards on order
- Detector Digitizer board (ALMA under design)
- Most parts have been tested or under test
- Bench Version 27K (qty 1) original est 45K/2 (07/01)
- Integrated Version \$8500 (qty 1 estimate)

Converter Modules

GENERAL SCHEDULING SCHEME:

May-June: *Construction 4/P Test Set

June-July: *Construction 4/P Converter

July-Sept.: Construction L/S/C Converter

Sept.-Nov.: Construction UX Converter

Nov.-Dec.: Bench integration & packaging

* Under construction now (in-house)

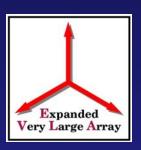
4/P Band Test Set


- There is a need to simulate the 4/P Band receivers and the new 1024MHz LO for construction. (New LO's not available until end of year for module checkout).
- Lighten load on lab test equipment for module checkout & bench integration

JUNE 2002 STATUS (Test Set):

Designed; construction nearly completed

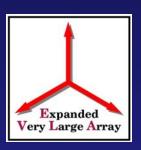
T301 4/P Converter



DESIGN CHANGES SINCE PDR: minor

- Better determination of "narrow band" receiver powers for proper amplifier selection
- Improved RF and LO isolation & headroom
- Exact Solar Attenuation still pending
 COST/BUDGET: no significant changes

T301 4/P Converter


JUNE 2002 STATUS:

This converter is being built at this time

- 80% of RF components ordered & received
- PCB layout/artwork in progress
- PC Boards expected delivery: first of July
- Prototype completion: end of July
- Mechanical completion: end of year

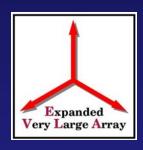
T302 L/S/C Converter

DESIGN CHANGES SINCE PDR: minor

- Final amplifier gains and LO levels
- Exact Solar Attenuation still pending

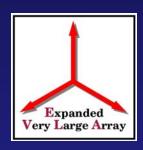
COST/BUDGET: no significant changes JUNE 2002 STATUS:

- Major components to be ordered June 2002
- Electronic construction Aug.-Sept.; mechanical packaging end of year



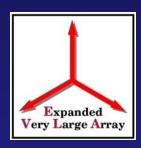
JUNE 2002 STATUS:

- Significant time was spent Mar.-May in converter redesign and performance issues
- Major components to be ordered July 2002
- Electronic & mechanical construction Sept.-Nov. 2002
- Bench integration Nov.-Dec. 2002



DESIGN CHANGES SINCE PDR: MAJOR

- "Block convert" scheme changed overall LO/IF concept for complete redesign.
- 32 req'd; no longer a transition converter.
- No longer suitable as a module; unique packaging and metal work required.
- Redesign/approval completed May 2002.

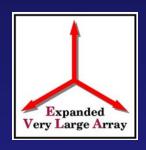


• COST/BUDGET: Significantly increased complexity and cost of converter by about \$7-10K each. (?)

Easily absorbed by the \$1.2M "saved" by the front-end lab ☺

JUNE 2002 STATUS:

- Significant time was spent Mar.-May in converter redesign and performance issues
- Major components to be ordered July 2002
- Electronic & mechanical construction Sept.-Nov. 2002
- Bench integration Nov.-Dec. 2002

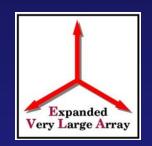

T310 Converter Interface Module

- This 1-wide module will house the MIB and service the M/C requirements of all 3 converters.
- M/C loading fairly low. (Mostly power monitors & solar attenuator control).
- Preliminary design only. Final design near bench integration when MIB specifications are finalized.

L301, L302 Progress

- 50% designed, prototyping in progress
- Proto YIGs on hand
- Sampling Phase Detector PCB fabricated
- Phase Lock Loop board in 2nd revision
- Output amplifiers ordered (~45-90 day lead)
- Other (anticipated) long-lead parts on hand

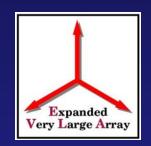
L301, L302 *Preliminary* Cost Estimate



- L301 12-20 GHz
- YIG ~\$2,600
- RF parts ~\$4,500
- Other ~\$3,000
- Total ~\$10,000
- Array Total ~\$640K
- Original est 7/01 13.6K

- L302 10-15 GHz
- YIG ~\$1,900
- RF Parts ~\$5,000
- \bullet Other \sim \$3,000
- Total ~\$10,500
- Array Total ~\$1.3M
- Original est 7/01 13K

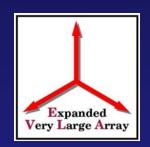
References Gen & Distribution



PROGRESS

- Central Ref Gen/Dist Preliminary Block Diagram Complete
- Antenna Ref Gen/Dist Preliminary Block Diagram Complete
- 128/32 MHz Synth Detailed Block Diagram Complete

References Gen & Distribution



PROGRESS

- 128/32 MHz Synth Long Lead Components Received
- 128/32 MHz Phase Detector Circuit and PCB Design in Progress

References Gen & Distribution

SCHEDULE

- 128/32 MHz Phase Detector Circuit and PCB Design Completion – July 8
- 128/32 MHz Synthesizer Begin Test July
 22
- 128/32 MHz Synthesizer Approx Cost -\$1850