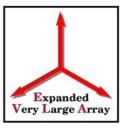


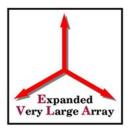
EVLA Overall System Specifications

Rick Perley EVLA Project Scientist



EVLA Design Philosophy

- The EVLA Project has never intended to build an entirely new telescope.
- The design approach has always been to maximize the increase in observational capabilities by combining:
 - Existing infrastructure (array, antennas, people ...)
 - Modern technologies
- It was clear early in the design process that an orderof-magnitude improvement in all key observational capabilities was both feasible and practical.



- An order-of-magnitude improvement at modest cost sounds good, but the expenditure must be justified by the potential science return.
- Important design philosophy the EVLA, like the VLA, is to be a general-purpose, flexible instrument, for astronomical research.
- A series of meetings resulted in a wide-ranging comprehensive science case, which was included in the proposal to the NSF for Phase I funding.

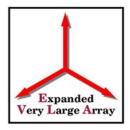
Top-Level EVLA **Technical Goals**

An early review of potential capabilities resulted in the following top-level technical goals:

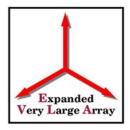
- Complete Frequency Access (300 MHz 50 GHz) with the best 'G/T' at each band.
- Up to 8 GHz (per polarization) instantaneous BW
- A wide BW, extremely highly linear, fullpolarization correlator with at least 16,000 channels, up to 1 Hz resolution, pulsar binning, subarraying, and VLBI-ready capabilities.

Top-Level EVLA **Technical Goals**

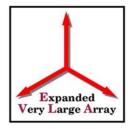
- Improved low-surface brightness imaging capability
- A factor of ten increase in resolution, with excellent imaging capability.
- Be able to incorporate VLBA antennas in the future.
- Improved operations and user interaction capability.


The Two Phases

- An early decision: -- split the project into two phases.
- Phase I: Essentially an upgrade to the VLA.
 - Funding secured (mostly final word on correlator funding expected shortly)
 - Two components of the original Phase I plan were deferred to Phase II, primarily for budgetary reasons.
- Phase II (Completion Phase): Primarily an expansion.
 - Not yet funded a proposal is under development.
 - Will be discussed tomorrow


EVLA Technical Goals

- The top-level EVLA goals were presented to meetings of our scientific users, with the questions: What potential science can you foresee? What further capabilities are needed to get the best science from this instrument?
- The responses (in the form of typical and extreme observational programs) enabled a more detailed set of technical goals for the project.
- The more detailed 'Level 2' technical goals are:


Antenna ---Mechanical

- Pointing:
 - Blind: 6" rss between 30 and 70 degrees El.
 - Referenced: 3" rss between 20 and 70 deg. El.
 - OTF: 4" rss at drive rates up to 1 deg/min
 - 8", rss, at rates from 1 to 2.5 deg/min.
- Subreflector Positioning
 - Limits on focus, horizontal, rotation, and tilt positioning, and band change speed which are each about a factor ~2 tighter than current.
- Note: These goals are close to values already achieved there is no specific EVLA budget for improvement.

Antenna --Mechanical

- Antenna Slew/Settle
 - < 5 seconds, when angular motion is less than 30 arcminutes.
- Driver for the above: Mosaicing and OTF imaging at high frequencies.
- Cassegrain Feed Positioning
 - 5 arcminutes.

Driver: Hi-Fidelity, full-beam imaging (feed illumination offsets place phase gradient across primary beam).

Antenna - Electrical

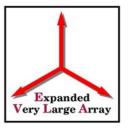
• Efficiency

Band (GHz)	Required	Target
1.2 - 2.0	0.5	0.55
2.0 - 4.0	0.55	0.60
4.0 - 8.0	0.60	0.65
8.0 - 12.0	0.60	0.65
12.0 - 18.0	0.60	0.65
18.0 - 26.5	0.55	0.60
26.5 - 40.0	0.50	0.55
40 - 50	0.45 - 0.40	0.50 - 0.45

Driver: EVLA Sensitivity Goal of $< 1 \mu$ Jy in 12 hours.

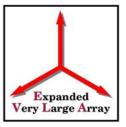


- Main-Beam Similarity
 - Power variation < 3% of peak, within FWHP.
 - Phase variation < 0.2 deg (L-band) to 5 deg (Xband and higher) with FWHP.
- Illumination Centroid
 - Centroid within 10 cm of the antenna center.
- Driver: Minimization of computing efforts for full-field and mosaic imaging.


Antenna - Electrical

- Polarization
 - Stability (stable weather, within FWHP, 8 hr)
 - RCP and LCP polarization ellipses stable to 0.002 in axial ratio, and 2 degrees in position angle.
 - Ellipticity and Orthogonality
 - RCP and LCP on-axis AR to be 0.9 to 1.0
 - RCP and LCP major axes orthogonal to 10 degrees.
 - 'Squint' Stability
 - Separation of R and L beams to remain constant to 6 arcsec.
- Driver: High-fidelity polarimetric imaging.

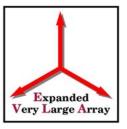
Antenna - Electrical


• Receivers

- Tsys

- Ae/Tsys

Band	Tsys	Ae/Tsys	SEFD
1-2	20	13.5	200
2-4	25	11.8	235
4-8	31	9.4	270
8-12	34	9.4	290
12-18	35	9.1	300
18-28	52	5.7	490
28-40	56	4.8	570
40-50	76-104	3.3-2.1	1310



- Performance Variation over Frequency:
 - Increase of Tsys within any band, relative to best value, to be less than
 - 3dB over full bandwidth
 - 1 dB within inner 85% of BW
- Driver: To ensure sensitivity goal over wide bandwidth.

Antenna - Electrical

- Receivers
 - Power Linearity
 - Better than 0.5% over input power range of 15 dB. Driver: Accurate (relative) flux density calibration
 - Better than 2% over input power range of 50 dB. Driver: Solar observing, and tolerance to RFI.
 - Time Response
 - 0.5% power linearity condition to be maintained on 20 ms timescale.

Driver: OTF imaging and solar flare observations

- Temporal Phase Stability
 - $-1-\sigma$ variations < 0.5 ps on timescales < 1 sec.
 - Slope < 0.2 ps/min over durations < 30 min.
 - Variations about this slope < 1.4 ps.
 - Angle-dependent phase changes less than:
 - 0.7 ps for any angle change
 - 0.07 ps for antenna angle changes < 10 degrees.

Driver: Phase-coherent capability at 50 GHz.

- Receivers Bandpass Characteristics
 - Amplitude Stability
 - Variations (power) < 0.01% on timescales < 1hr, over frequency scales < $v_0/1000$.
 - Phase Stability
 - Phase variations < 5 millideg, on timescale < 1 hr, over frequency scales < $v_0/1000$.
 - Driver: Sensitive absorption line studies (high spectral dynamic range).

- Receivers Bandpass Characteristics
 - Gain Slope
 - Power gain variations < 3dB across full bandwidth
 - Gain variations limits on gain slope which vary with band.
 - Gain Ripples
 - < 0.25 dB on band-dependent frequency scales
 - Phase Ripples
 - < 2 electrical degrees, on band-dependent frequency scales.

Driver: To limit closure errors to reach dynamic range goal of 70 dB.

- Receivers Tolerance to Power Spikes
 - Ability to absorb 10 mW for 1 second without permanent physical damage.
 - Driver: To handle RADARSAT-like emission seen through the main beam.

Time Accuracy

• Time

– System time accurate to 10 nsec.

Driver: Pulsar timing observations.

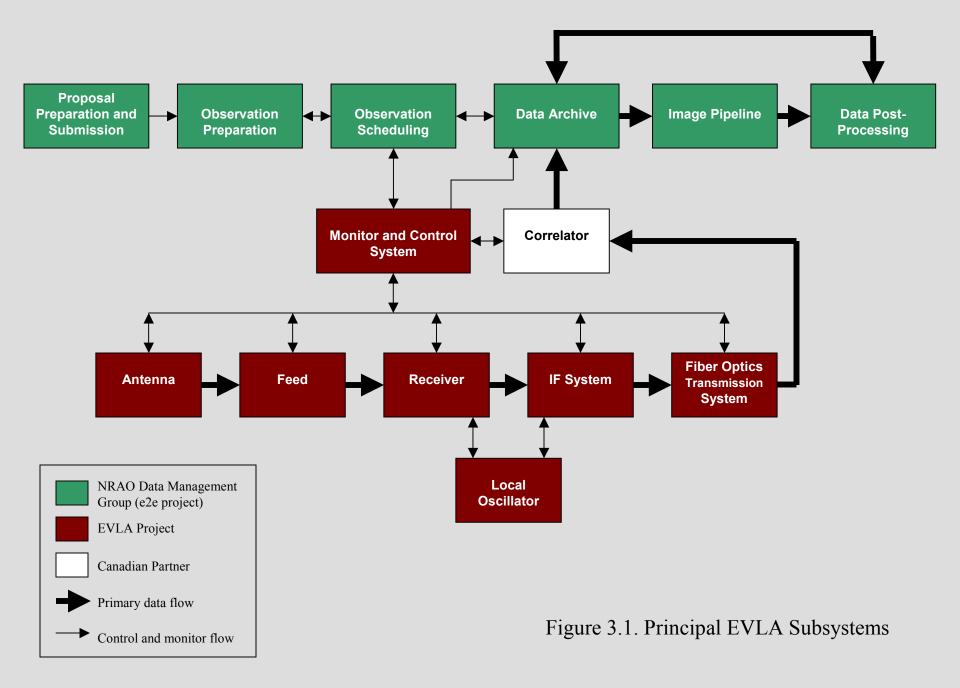
Correlator

- Bandwidth
 - Variable, up to 8 GHz per polarization
- Polarization
 - Full polarization capabilities.
- Frequency Resolution
 - Variable, from ~ 1 MHz to 1 Hz.
- Number of Channels
 - At least 16,384
- Time Resolution (dump speed)
 - Better than 10 msec

Correlator

- Pulsar modes
 - Binning capability, with > 1000 bins, each with full spectral capability and 200 μ sec time resⁿ.
- Subarray capability
 - At least 5 simultaneous subarrays.
- Phased Array capability
 - Required, for each subarray.
- Linearity (spectral dynamic range)

- > 50 dB (H₂O masers, tolerance to RFI)



Correlator

- Baseline Range
 - To continental scales
- VLBI capabilities
 - VLBI-ready (tape or real-time)
- RFI tolerance
 - > 50 dB spectral linearity
 - Ability to avoid strong RFI

Driver: To enable the EVLA to achieve its science goals!

Operational (M&C)

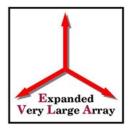
- The specific requirements for the M&C System are given in EVLA Memo #15 (Benson and Owen).
- Key Top-Level Goals:
 - Replace the ModComps, and control current VLA hardware. Continue to use existing control scripts (OBSERVE/JOBSERVE)
 - Control a hybrid VLA/EVLA, during the transition phase.
 - Control the EVLA, the NMA, and fiber-linked VLA Antennas

Operational (M&C)

- Specific Scientific Goals for the M&C System include the following
 - Spectral Line Imaging
 - Mosaicing
 - Observations of solar system objects
 - Solar observing
 - Astrometry
 - Rapid response to transient sources
 - VLBI/VLBA observing

Operational (M&C)

- Specific Scientific Goals for the M&C System include the following (cont.):
 - Pulsar observing
 - Total Power measurements
 - NMA/PT Link/future real-time VLBA
 - Miscellaneous (currently unplanned) items.


Operational (M&C)

- Scientific Goals include:
 - Recommended minimum output data rate
 - Hardware reconfiguration times
 - Subarrays
 - Interferometer model
 - Management of correlator modes and times
 - Special observing modes phased array, reference pointing, focus, tipping scans, holography, survey modes
 - Support for special hardware: GPS, API, WVR, etc.
 - RFI detection, avoidance, excision
 - Archive of monitor data and observation parameters

Astronomer-Instrument Interfaces

- Part of the e2e project.
 - Proposal Submission and Handling
 - Observation Preparation and Scheduling
 - Observation Control and Feedback
 - Data Archive
 - Pipeline Processing default images
 - Data Reduction Software