

EVLA Advisory Panel Mtg. System Overview & Status

Jim Jackson, Hardware Systems Engineer

- Feed cone installed
 - Metal covered plastic core honeycombmaterial
 - RFI tight at seams
 - RFI gasket at base
 - Open base for access to front ends

- X-Band front end installed
 - Cooled down and ready for system testing
 - Will allow testing of:
 - T304 Main downconverter
 - L301/302 Synthesizers
 - Total power digitizers
 - 8-Bit digitizers
 - Data transmission system
 - Transition hardware
 - DC power system

- Racks installed
 - LO/IF & ACU Racks
 - Commercial RFI racks
 - DoD "Tempest" rated (approx 55dB @ 5GHz)
 - All I/O signals filtered or on fiber
 - Suitability for production to be evaluated

- Racks installed
 - Front end rack
 - Reuse existing VLA
 B/F-rack frames
 - Adding metal covered plastic core honeycomb covers

- Racks installed
 - G & H-Racks
 - G-Rack houses DTS/Sampler modules
 - H-Rack houses Ethernet switch
 - NRAO designed RFI tight enclosure (approx 80dB up to 10Ghz)

- Fiber optics installed
 - Two hybrid cables installed between pedestal & vertex room
 - Each contains 12 single mode and 32 multi mode fiber
 - Watch spring design for azimuth cable wrap
 - Round Trip Phase testing
 has begun to evaluate
 performance of fiber on the
 antenna and in the ground

- New HVAC system
 - Designed to minimize RFI leakage of vertex room
 - Closed air system air handler located completely inside vertex room
 - Uses chilled water from outdoor condenser unit
 - Can utilize cold outdoor conditions for energy savings

- -48 VDC power system
 - Commercial bulk power products
 - Designed for telecom
 - 52.5 Amp cont. capacity
 - N+1 redundant design for reliability
 - Battery backup for 1 hour
 - Installed in "Tempest" rated
 RFI shielded rack in
 antenna pedestal room
 - Reuses existing Square-D"QO" breakers and panels

• Fiber termination room

- All fiber from array enters
 the building and terminates
 in patch panels at this point
- Satisfies electric code requirements for outdoor fiber terminating in the building
- Distributed to control building patch panels from this point

- Correlator room fiber optic cable penetrations
 - RFI tight
 - Fiber penetration into existing correlator room
 - Ethernet fibers in penetration to electronics room
 - IF fibers in separate penetration under floor

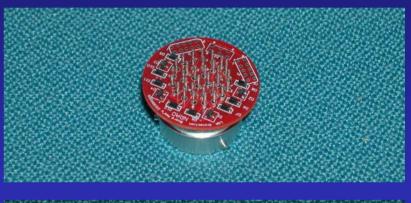
- Fiber optic patch panels
 - LO, IF and M&C patch panels
 - Array re-configuration
 is accomplished at these
 panels

- Buried fiber optic cable
 - Burial on east and west arms complete ahead of schedule
 - Burial on north arm begins in October 03
 - Field splicing begins
 after burial completion

- Networking equipment
 - New networking
 equipment installed in
 control building and AOC
 for EVLA

- Front ends
 - K & Q-Band
 - Modified VLA units
 - New block downconverter
 - Q-Band Caltech post amp
 - K-Band new feed mount
 - Ka-Band
 - In design
 - Caltech block downconverter due in December 03
 - Scheduled for installation early summer 04

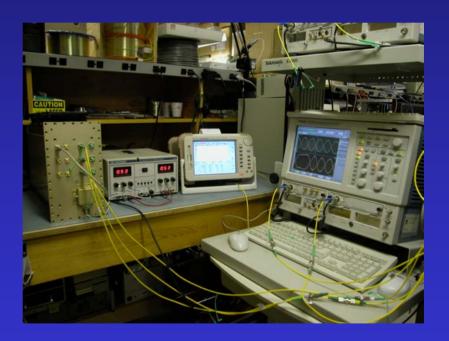
• Front ends


- L-Band
 - Christmas tree complete at VLA site
 - Feed components in production at VLA machine shop (90% complete)
 - Transition front end prototype to be installed Nov 03
 - Final EVLA front end to be installed May 04
- C-Band
 - Detailed designs in drafting
 - Christmas tree complete at VLA site

- Front ends
 - Card cage
 - PCB's in layout
 - Mechanical packaging in design
 - Integrated harness and
 LNA protection board
 assembled and in testing

Digitizers

- 8-bit, 2 Gsps digitizer
 - Dual Maxim MAX104, each running at 1Gsps
 - first prototype assembled & currently in testing
 - Installed in DTS module


- Digitizers
 - 3-bit, 4 Gsps digitizer
 - ALMA device under development in France
 - design review 16-17 October in Bordeaux, France
 - Potential alt source of high speed A/D's (Atmel)
 - 8 bit, 2 Gsps, 3GHz BW A/D samples available
 - 8 bit, 4 Gsps, 4GHz BW A/D in development
 - This device could replace both EVLA digitizers

• DTS/Sampler Module

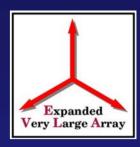
- Prototype module assembled and in testing
- NRAO designed RFI tight module (60-80dB shielding)
- All digital electronics contained inside module
- Analog IF & clocks on coax
- Digital optical output on fiber
- Timing & Ethernet on fiber
- Design common with ALMA
- Live demo in lab today

DTS Deformatter

- Module mounts to WIDAR station card
- Contains:
 - Fiber optic receivers
 - Demux / Deformatters
 - Transition FIR Filter
- PCB assembled, FPGA code being finalized & tested
- Housed in temporary racks in present correlator room during transition

P301/302 DC/DC Converter

- Prototypes assembled and running in lab
- Using Vicor DC-DCconverters low noise, zeroswitching design
- Extensive output filtering
- Flexible design allows for various configurations
- Design common with ALMA

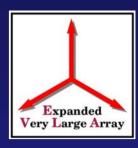


Converters

- T301 4/P converter
 - modules in assembly
 - bench prototypes complete & tested
- T302 LSC converter
 - modules in assembly
 - bench prototypes complete & tested

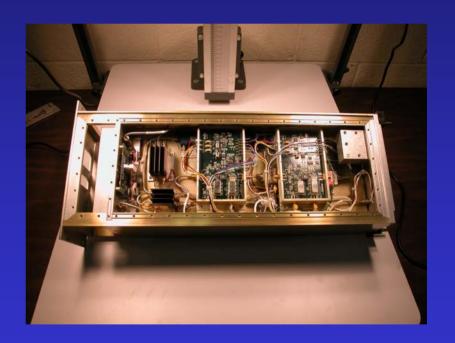
Converters

- T303 UX converter
 - bench prototype complete& tested
 - connectorized chassis version in final assembly & testing
 - contract award for integrated version in process (vendor selected)



Converters

- T304 Downconverter
 - Bench prototype complete
 & tested
 - Connectorized chassis version for test antenna in final assembly & testing
 - Design in progress for integrated version



Synthesizers

- L301 12-20 GHz prototype complete and functioning in lab (demo today)
- L302 10.8-14.8 GHz electronics assembled, tested and awaiting MIB software
- Both ready for thermal and RFI testing
- Potential for future integrated assemblies

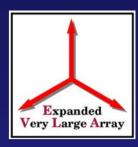


- Reference generators
 - L305 / L350
 - Printed circuit boards complete
 - bench prototypes in testing and debugging
 - modules under development

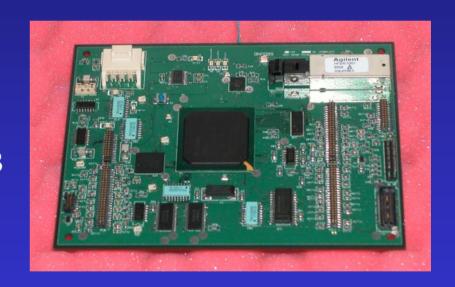
- LO transmission & round trip phase
 - L351/L352/L353/L304
 - proof of concept and data gathering tests being performed in lab and at VLA site
 - bench integration prototypes in testing and debugging
 - modules under development

- Types I -VI Modules
 - Prototype designs complete
 - Most components fabricated and assembled
 - Initial RFI and thermal testing has begun
 - Designs also now being adopted by ALMA BE IPT

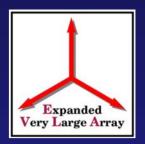
- Bench integration
 - Most modulesassembled in plateform for testing in lab



- Antenna MCB H-Rack
 - installed in Antenna 13
 - contains Cisco Ethernet switch
 - Tripplite 1 KVA UPS
 - M&C fiber termination panel



• MIB


- NRAO design
- Low RFI design
- FO Ethernet Interface
- Uses Infineon TC-11IB microprocessor
- Plan to use contractassembly house –Quoted price \$700 ea

System Change

(since last meeting)

• New timing synchronization scheme:

- free running in normal operation
- 19.2Hz and 1Hz synchronized to array central time by a pulse encoded in 512MHz optical reference
 - pulse is sent by deleting 8 clocks from 512Mhz reference
 - pulse is detected at antenna LO receiver, resets counters in FPGA
 - does not interfere with main reference signals in antenna
- sync pulse sent only on command from M&C system
- synchronization loss detected using DTS data stream or timing data sent back from antenna
- network time broadcast sets time at next 1 Hz tick

Questions?

