## **Project Overview and Status**

EVLA Advisory Committee Meeting, March 19-20, 2009



Mark McKinnon EVLA Project Manager

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array



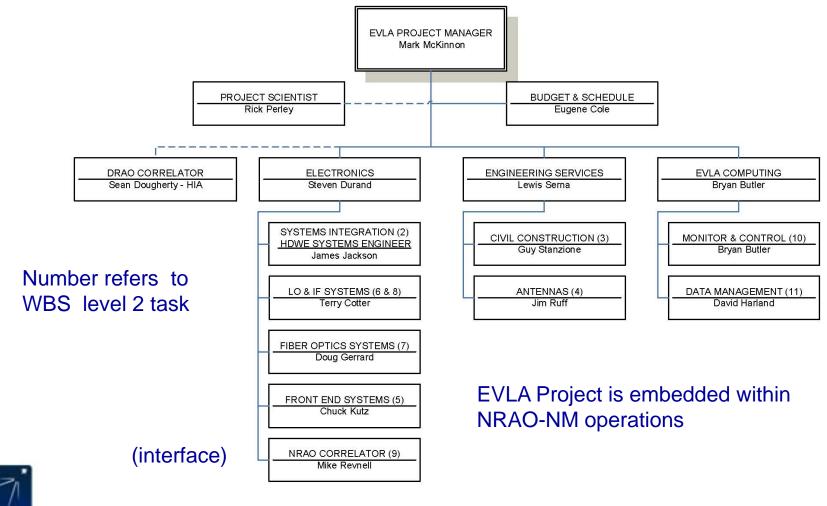


# Outline

- Project Goals
- Organization
- Staffing
- Progress since last meeting
- Budget
  - Contingency
  - Risk Management
- Schedule





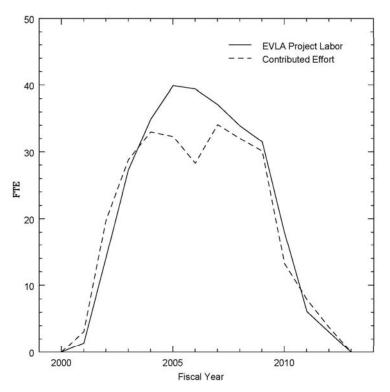

# **Project Goals**

- Key goal: Improve the observational capabilities of the VLA (except for angular resolution) by a factor of ten or more. Achieve by:
  - Adding new, wide bandwidth receivers
  - Upgrading or replacing current receivers
  - Replacing the data transmission system
  - Replacing the correlator
- Provide a new monitor and control system, which must also allow operation of new and old antennas in transition.
- Perform careful astronomical observations to verify that EVLA hardware and software function properly.
- Provide new data management software, to include data post processing, for better access to array data products (effort distributed across divisions of NRAO)





## **Organization**





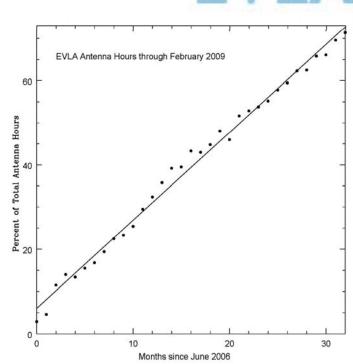



# Staffing

- Labor to complete project is supported by two funding accounts:
  - Labor paid directly by funds allocated to EVLA project
  - "Contributed effort" paid by other NRAO Operations funds
- Labor split is about 50/50 between accounts
  - 286 FTE-years from EVLA project
  - 266 FTE-years of contributed effort
- Project success is tied to continued support of both project and operations funding
- Plan developed to transfer some project personnel to operations budget
  - Establishes base staff level for EVLA technical operations
  - Retains mission-critical personnel in long term EVLA operations
  - Actively used to manage staffing levels







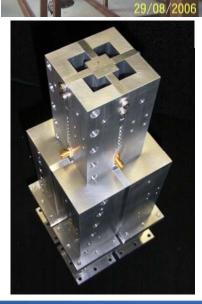

## **Progress Since Last Meeting**

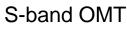


#### Antennas

- Antenna conversions on track for completion in Q3 2010
  - Antennas placed in operation immediately after retrofit is complete
    - 20 EVLA antennas now in use
      - Account for 71.4% of total antenna hours used in observations
    - Electronics outfitting of 21<sup>st</sup> antenna underway
    - Mechanical overhaul of 22<sup>nd</sup> antenna just started
  - Proceeding at desired rate of about 6 per year






# **Front Ends**

- Excellent progress on feed horn fabrication
  - All horns fabricated for L, C, and Ka-bands
  - Fabrication of S- and Ku-band horns underway
- Full production of Ka-band receivers underway
  - First fringes on one baseline in Aug 2008
  - 8 receivers installed in array now
  - Call for Ka-band proposals issued in Jan 2009
- Design and fabrication issues with OMTs resolved [Hayward/Coutts]
  - L, C, and S-band OMTs meeting specifications
  - Design of X-band OMT nearly complete
- First S-band receiver deployed
- Production of EVLA L-band receivers to begin in FY2009
- Prototype EVLA Ku-band receiver under development









L-band horns



# LO/IF

- Production of local oscillator (LO) and intermediate frequency (IF) modules is slightly ahead of antenna conversion schedule
  - Module assembly should be complete by the end of 2009
- Wideband upgrade (from existing 1GHz bandwidth per downconverter module to 2x2GHz) is underway. Includes:
  - Wideband filters
  - Gain slope equalizers
  - Second set of synthesizers
- Modules for round trip phase measurement placed in production
- Significant progress made in resolving mechanical and thermal issues affecting phase stability [Jackson]





## **Fiber Optics and Data Acquisition**

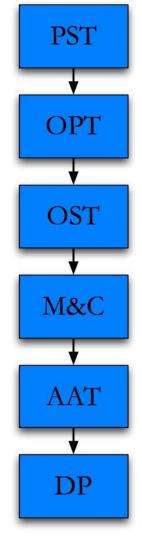
- Production of all modules for the data transmission system (DTS), except high speed sampler, is keeping pace with antenna retrofits
- Fiber infrastructure completed in 2007
  - Provides flexibility in locating antennas on the array
- High Speed Samplers (3-bit, 4Gsps) [Durand/Revnell]
  - Digitizer chips delivered and perform to specification
  - Issues with serial-to-parallel converter on sampler board delayed production
    - Expect production to commence this summer
  - Need WIDAR correlator to exploit capability





# **WIDAR Correlator**

- S. Dougherty became new WIDAR project lead at DRAO
- Internal review of WIDAR management held in Feb 2008
  - Led to improved communication on management issues
- Production review of correlator boards held in Dec 2008
  - NRAO conducted on-the-sky tests of prototype in support of the review [Rupen]
    - First fringes with WIDAR prototype recorded in Aug 2008
  - Production order for station boards placed in Jan 2009
- Other major milestones achieved [Dougherty]
  - Custom correlator chips (12,000) received in Apr 2008
  - Data cables and all 16 racks installed in Jun-Aug 2008
  - First fringes with subset of final WIDAR recorded on Mar 6, 2009




# EVLA

## **Software**

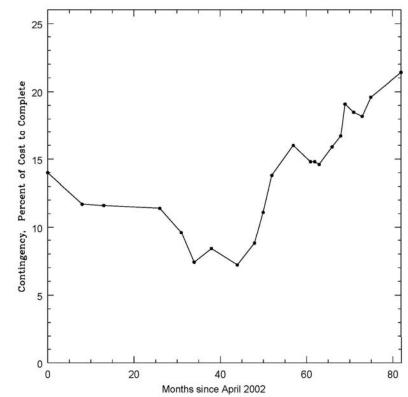
- Proposal submission tool (PST)
  - Used for all VLA, VLBA, and GBT proposals
- Observation preparation tool (OPT) [Harland]
  - Replacement for VLA jobserve
  - Used to support call for Ka-band proposals
  - Current development focused on WIDAR support
- Observation scheduling tool (OST)
  - Dynamically scheduled system now in place
  - Development based on experience with dynamic scheduling of VLA
- Monitor and Control (M&C) [Butler]
  - In 2007, implemented a new M&C system while continuing to support scientific observations with old and new antennas
  - Systems integration of WIDAR underway
- Archive access tool (AAT)
  - In place for EVLA, VLBA, and GBT data retrieval
  - Uses storage technology from ALMA's Next Generation Archive System
  - Developed standardized binary data format and science data model that is shared with ALMA







# **Budget: Funding**

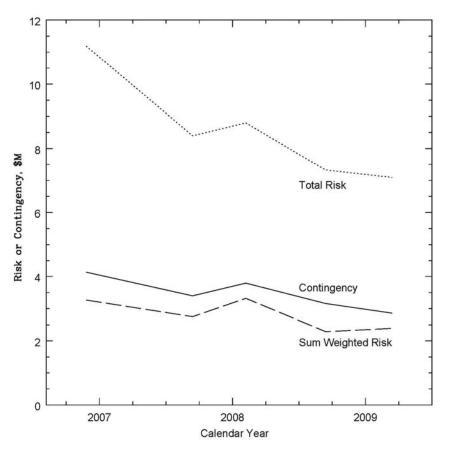

| • Funding = \$93.8M (FY06)                  |         |
|---------------------------------------------|---------|
| <ul> <li>New NSF funds</li> </ul>           | \$58.7M |
| <ul> <li>Provided over 11 years</li> </ul>  |         |
| <ul> <li>NRAO contributed effort</li> </ul> | \$16.3M |
| <ul> <li>Canadian partner</li> </ul>        | \$17.0M |
| <ul> <li>Contribute correlator</li> </ul>   |         |
| <ul> <li>Mexican partner</li> </ul>         | \$1.8M  |
| <ul> <li>Funds received</li> </ul>          |         |





# **Budget: Contingency**

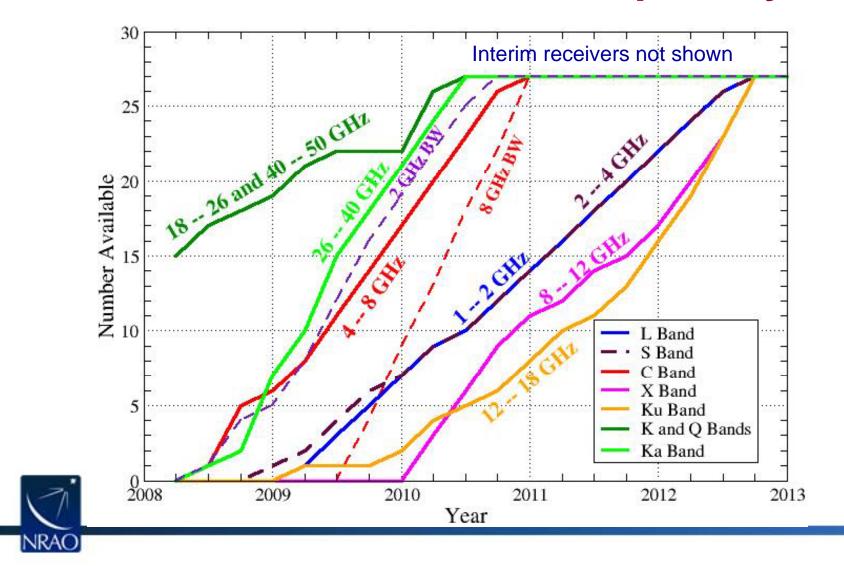
- Financial health of project is good
- All WBS elements of the project are operating within their budget allocations
- Project contingency, as percent of cost to complete:
  - Has improved over last 3 years
  - Remains at historically high levels
    - 21.4% (\$2.86M)
  - Does not include work on the correlator, which is supported by Canadian funds
- No plans to exercise potential hardware descope options








# **Risk Management**


- Risk management plan developed in Dec 2006
  - Financial impact and probability of occurrence for each risk are estimated
- Risks actively managed
  - Since the plan was established, the total number of risks has decreased from 79 to 46
  - Total risk has decreased from \$11.2M to \$7.1M
  - Sum weighted risk has decreased from \$3.3M to \$2.4M
  - Contingency has always exceeded weighted risk, but is less than the total risk.
- Current challenge is effective allocation of contingency to mitigate remaining risks







#### **Schedule: Growth of New Capability**





## **Schedule**

- Project is on schedule
- At current rate, antenna conversions will be complete by Q3 CY2010
- Correlator on schedule for completion in Q1 CY2010
- Remaining major milestones paced by correlator delivery:
  - Installation of final WIDAR boards begins Q2 CY2009
  - Anticipate first science with WIDAR in Q1 CY2010
- Receiver installation to be complete in Q4 CY2012
- Development of M&C software and basic user tools on track to support commissioning and early science observation





# Summary

- Good progress has been made over past 18 months
- Project is going well
- Budget: Financial health of the project is good
- Technical issues largely resolved
- Project is on schedule:
  - Antenna retrofits will be complete in Q3 CY2010
  - Receiver installation complete in Q4 CY2012
  - Correlator scheduled for completion in Q1 CY2010
  - Software development on track to support commissioning and early science





## **Backup**





# **Budget: NSF Funding Profile**

| Year  | Initial (\$K) | Current (\$K) |  |
|-------|---------------|---------------|--|
| 2001  | 1,106         | 3,000         |  |
| 2002  | 6,900         | 5,000         |  |
| 2003  | 5,322         | 5,322         |  |
| 2004  | 5,434         | 9,340         |  |
| 2005  | 5,548         | 5,340         |  |
| 2006  | 5,665         | 5,440         |  |
| 2007  | 5,835         | 5,835         |  |
| 2008  | 6,010         | 6,010         |  |
| 2009  | 6,190         | 6,190         |  |
| 2010  | 6,376         | 6,376         |  |
| 2011  | 4,597         | 1,130         |  |
| Total | 58,983        | 58,983        |  |



## **Budget Distribution by WBS**

| WBS Element | Description           | % of Total Cost |  |
|-------------|-----------------------|-----------------|--|
| 601         | Project Management    | 4.7             |  |
| 602         | Systems Integration   | gration 6.6     |  |
| 603         | Civil Construction    | 2.7             |  |
| 604         | Antennas              | 4.9             |  |
| 605         | Front End Systems     | 20.7            |  |
| 606         | LO Systems            | 6.0             |  |
| 607         | Fiber Optic Systems   | 10.8            |  |
| 608         | IF Systems            | 6.0             |  |
| 609         | Correlator            | 17.5            |  |
| 610         | Monitor & Control     | 12.6            |  |
| 611         | Data Mgt. & Computing | 7.5             |  |
| 612         | Education & Outreach  | 0.0             |  |
|             |                       |                 |  |
| NRAOJ       |                       |                 |  |



#### **Risks by WBS Element**

| WBS                  | Risk Number | Total Impact (\$K) | Wt. Impact (\$K) |
|----------------------|-------------|--------------------|------------------|
| Project Management   | 3           | 2,557              | 856              |
| Systems Integration  | 2           | 100                | 10               |
| Civil Construction   | 5           | 205                | 45               |
| Antennas             | 3           | 355                | 83               |
| Front End            | 10          | 1,202              | 549              |
| Local Oscillator     | 1           | 300                | 90               |
| Fiber Optics         | 3           | 115                | 45               |
| Intermediate Freq.   | 0           | 0                  | 0                |
| Correlator Interface | 2           | 190                | 128              |
| Monitor & Control    | 7           | 570                | 194              |
| Data Management      | 10          | 1,500              | 390              |





# **Risks Affecting Budget or Schedule**

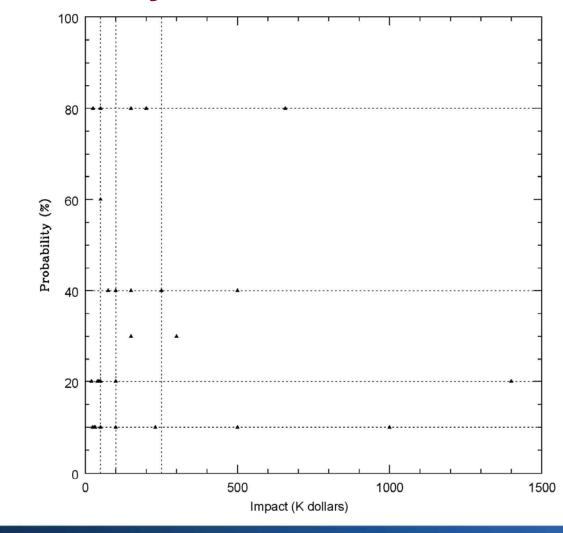
- Deployment of high speed samplers
  - Contingency plans well developed
  - Production should commence this summer
- Selection of X-band OMT
  - Design of planar-style OMT pursued as risk mitigation measure to larger, conventional, waveguide-style OMT
  - Selection will be made in next few months
- Virtual Correlator Interface (VCI)
  - Software that configures correlator for observations
  - Main focus of DRAO software development effort
- TelCal
  - M&C software that intercepts visibility data and performs calculations needed to derive Telescope Calibration quantities



Issue caused by staff departure. Replacement hire underway.



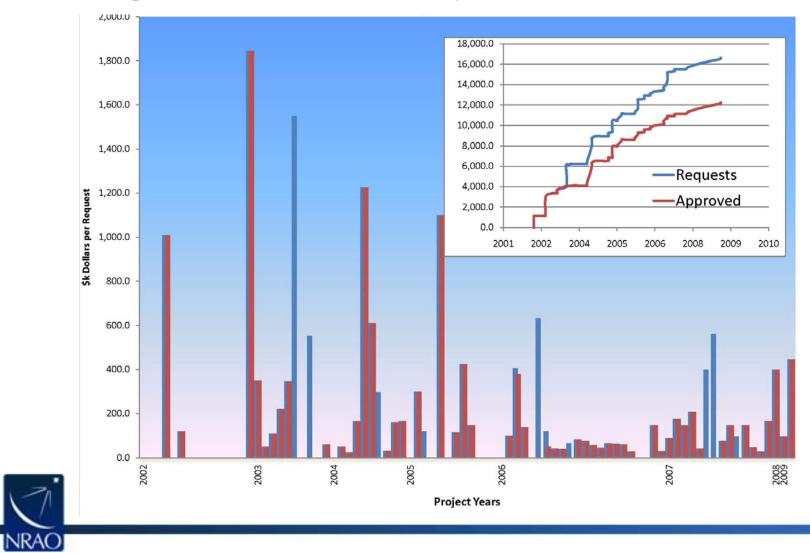
## **Examples of Retired Risks**


- Retired risks (\$ = impact, % = probability)
  - Correlator spare boards (\$200K, 40%)
  - Design path for 3-bit sampler (\$510K, 40%)
  - Outsourcing of machined components for front ends (\$600K, 80%)
  - Marching army costs in front end group (\$464K, 40%)





## **Risk Summary**


NRAO







## **Change Board History**





## **Descope Options**

- Given good financial health of the project, there are no plans to exercise descope options
- Descope options amount to receiver bands
  - Ka, S, and Ku-bands were under consideration for descope long ago, but we are now proceeding with their full production
  - Still possible to descope X-band: \$1.0M
  - Could also eliminate solar observing mode: \$0.2M
- Impact
  - Advertised scientific productivity of EVLA requires all hardware and software deliverables to be met.
  - Recovering from descopes would take many years.

