Recent progress in EVLA-specific algorithms

EVLA Advisory Committee Meeting, March 19-20, 2009

S. Bhatnagar and U. Rau

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Imaging issues

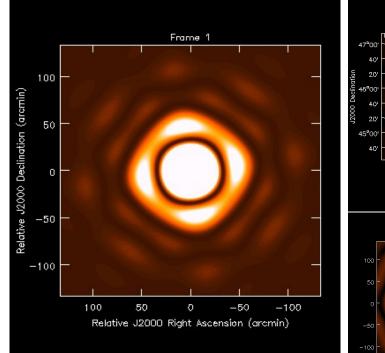
- Full beam, full bandwidth, full Stokes noise limited imaging
- Algorithmic R&D Requirements:
 - PB corrections:
 - Rotation, Freq. & Poln. dependence, W-term (L-band)
 - Multi-frequency Synthesis at 2:1 BWR
 - PB scaling with frequency, Spectral Index variations
 - Scale and frequency sensitive deconvolution
 - Direction dependent corrections

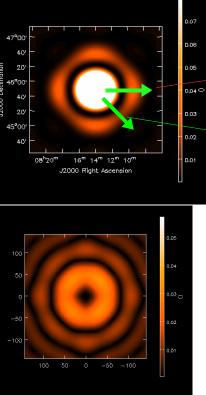
Calibration issues

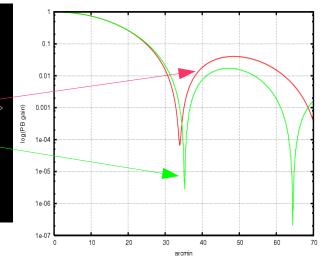
- Band pass calibration
 - Solution per freq. Channel (limited by SNR)
 - Polynomial/spline solutions (also ALMA req.)
 - Multiple Spectral Windows
- Direction dependent instrumental calibration
 - Time varying PB, pointing offsets, ionospheric (L-band)/atmospheric (all bands)
- Polarization calibration
 - Freq. Dependant leakage
 - Beam polarization correction
- RFI flagging/removal
 - Strong: Auto-, Semi-auto flagging

Weak: Research problem

Imaging limits: Due to PB


- Limits due to asymmetric PB
 - In-beam max. error @ 10% point: ~10000:1
 - Errors due to sources in the first side-lobe:
 3x-5x higher
 - Less of a problem for non-mosaicking observation at higher frequencies (>C-band)
 - But similar problems for mosaicking at higher frequencies
- Limits due to antenna pointing errors
 - In-beam and first side-lobe errors: ~10000:1
 - Similar limits for mosaicking at higher frequencies



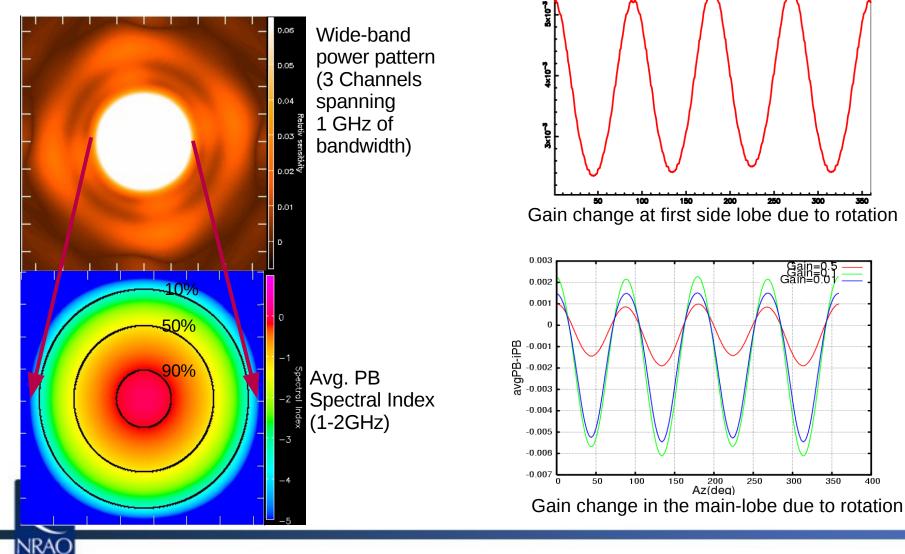


Imaging limits: Due to PB

• Time varying PB gain

Sources of time variability

•PB rotationally asymmetric•PB rotation with PA•PB scaling with frequency•Antenna pointing errors


Imaging limits: Due to bandwidth

- Frequency dependence
 - Instrumental: PB scales by 2X is strongest
 error term
 - Sky: Varying across the band needs to be solved for during imaging (MFS)
- Limits due to sky spectral index variations:
 - A source with Sp. Index ~1 can limit the imaging dynamic range to ${\sim}10^{\rm 3-4}$

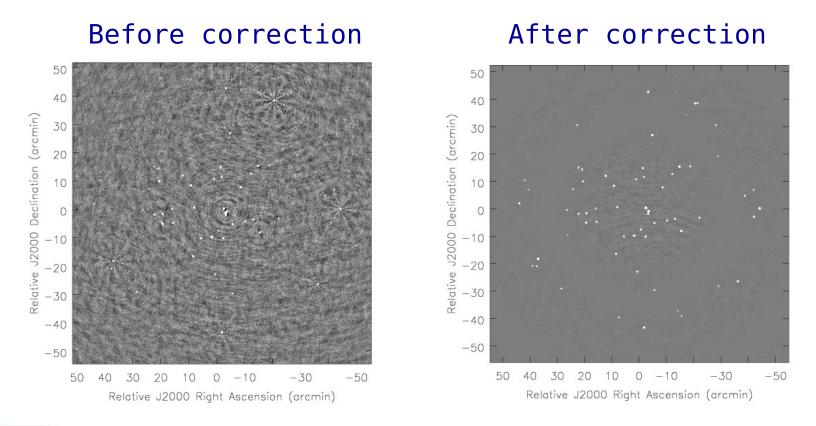
Wide-band static PB

Algorithmic dependencies

- Wide-band, "narrow field" imaging
 - Dominant error: Sky spectral index variation
 - Post deconvolution PB corrections: Assume static PB
- Wide-band, wide-field imaging
 - Dominant error: PB scaling
 - Require time varying PB correction during deconvolution
 - Pointing error correction
- Wide-band, full-beam, full-pol. Imaging
 - Dominant error: PB scaling and PB polarization
- High DR imaging / mosaicking (ALMA)
 - Requires all the above + Scale- and freqsensitive modeling (multi-scale methods)

EVLA

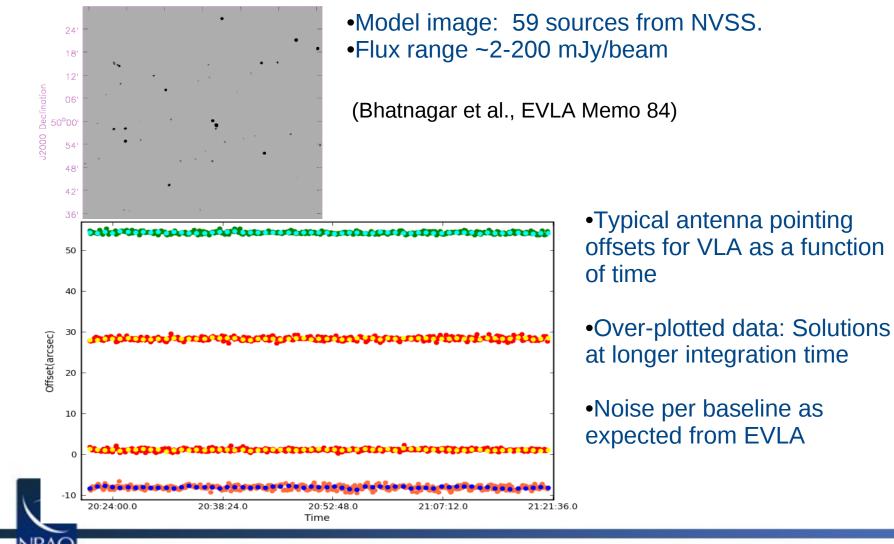
Progress (follow-up from last year)

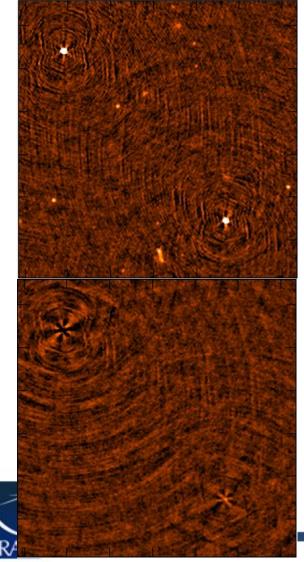

- Wide field imaging
 - W-Projection algorithm: [Published/in use]
 - 3-10X faster (Cornwell, Golap, Bhatnagar, IEEE, 2008)
 - Better handles complex fields
 - Easier to integrated with other algorithms
 - PB corrections
 - Basic algorithm: AW-Projection algorithm: [Bhatnagar et al./ Testing]
 - All-Stokes PB correction
 - PB freq. Scaling
 - PB-measurements
 - Pointing SelfCal:
- Wide-band imaging

[Initial investigations] [In progress] [In progress] [Sci. Testing] [Bhatnagar et al., EVLA Memo 84] [Basic algorithm Sci. Testing]

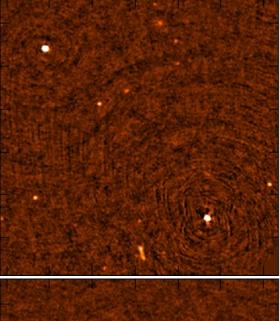
U. Rau's thesis: [in prep]

Correction for pointing errors and PB rotation: Narrow band




(Bhatnagar et al., EVLA Memo 100 (2006), A&A (2008)

Pointing SelfCal



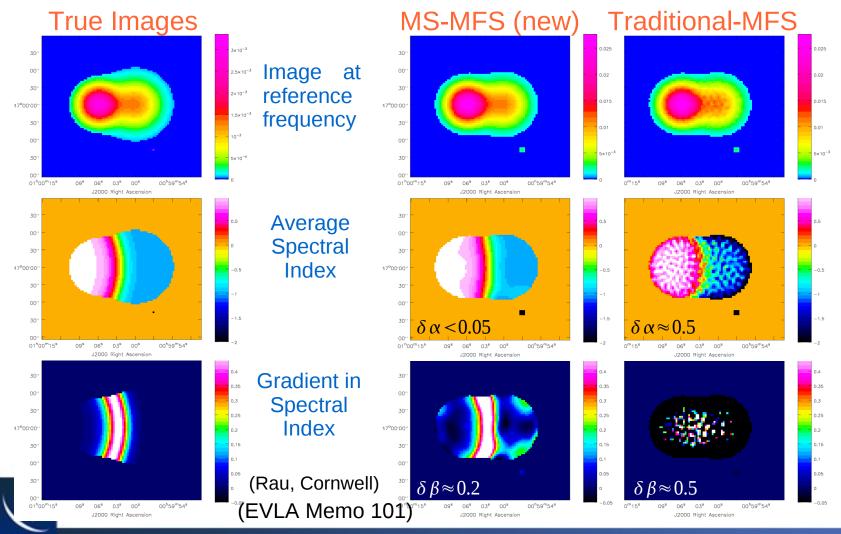
L-band imaging: Stokes-I & -V

Stokes-I

Stokes-V (10x improvement)

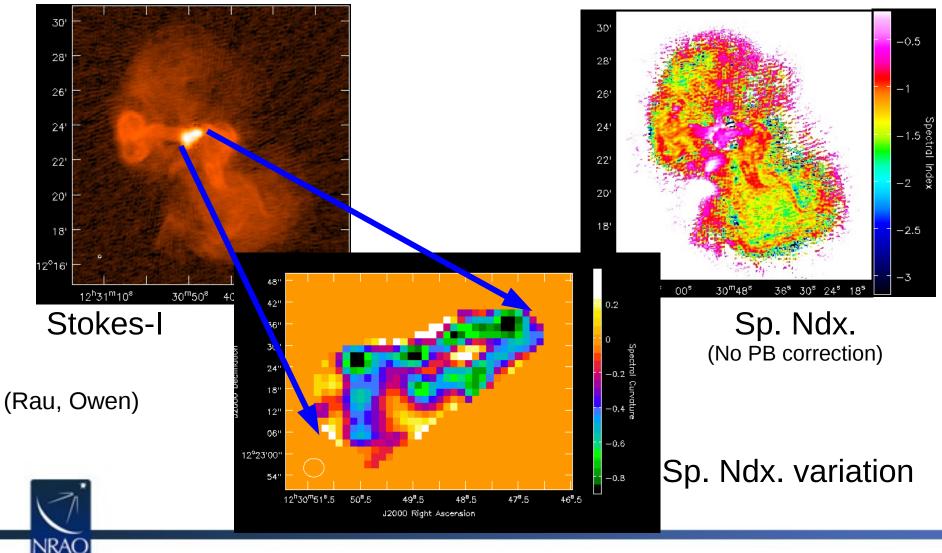
EVLA

EVLA


Wide-band imaging: Rau's thesis

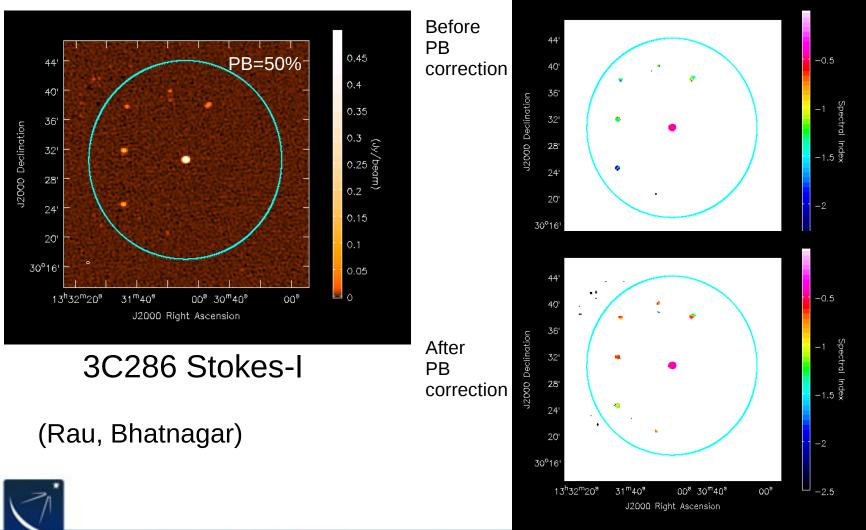
- Narrow field (EVLA Memo 101; Rau)
 - Traditional MFS/bandwidth synthesis/Chan.
 Averaging inadequate for EVLA 2:1 BWR
 - Post deconvolution PB correction
 - Hybrid approach: DR ~10⁴:1(Rau et al., EVLA Memo 101)
 - And requires more computing!
- MS-MFS (REF: in prep)
- MS-MFS + PB-correction
 - Combining MS-MFS with AW-Projection
 - Initial integration + testing in progress (with

real data)


Extending MFS: Basics algorithm

INRAO

Application to M87: Fresh results


EVLA

Wideband PB correction

INRAO

Computing challenges

- Significant increase in computing for wide-band and wide-field imaging
 - Larger convolution kernels
 - MFS and MS-MFS loads: Equivalent of $N_{taylor} * N_{scales}$ imaging load. Typical $N_{taylor} = 3$, $N_{scales} = 5$
- Direction dependent terms
 - Correction and calibration as expensive as imaging
- I/O load
 - Near future data volume: 100-200 GB / 8hr by mid-2010
 - 20-50 passes through the data (flagging +

calibration + imaging)

CASA Terabyte Initiative

- Develop pipelines for end-to-end processing
 - Primary calibration, flagging, Imaging, SelfCal
- Test Cluster parameters (Paid for by ALMA & EVLA)
 - 16 nodes
 - Each node: 8GB RAM, 200GB disk, 8 cores
 - Total cost: ~\$70K
- Current effort:
 - Data volume: 100 GB
 - Integration time=1s; Total length: 2hr
 - No. of channels: 1024 across 32 Sub-bands
- Future tests with 500 GB and 1 TB data sizes

EVLA

Computing & I/O load: Single node

- Data: 100 GB, 512 Channels, 4K x 4K x 512 Stokes-I imaging
- 4 CPU, 16 GB RAM computer
- I/O : Compute = 3:2
- Conclusions:
 - Simple processing is I/O dominated
 - Image deconvolution is the most expensive step
 - Most expensive part of imaging is the Major Cycle

– Exploit data parallelism as the first goal

• Total effective I/O ~1 TB (iterations)

Parallelization: Initial results

- Spectral line imaging: (8GB RAM per node)
 - Strong scaling with number of nodes & cube size
 - Dominated by data I/O and handling of image cubes in the memory
 - 1024 x 1024 x 1024 imaging
 - 1-Node run-time : 50hr
 - 16-node run : 1.5 hr
- Continuum imaging: (No PB-correction or MFS) •
 - Requires inter-node I/o
 - Dominated by data i/o
 - 1024 x 1024 imaging:
 - 1-node run-time : 9hr

- 16-node run-time : 70min (can be reduced upto 50%)

EVLA

Plan: Parallelization & Algorithms

- Initial goal for parallelization
 - Pipelines to exploit data parallelization
 - Get cluster h/w requirements
 - Collaboration with UVa
- New developments: Algorithms research
 - Imaging
 - Integration of various DD terms (W-term, PB-corrections, Sp.Ndx....)
 - Wide(er) field
 - Full polarization
 - Better scale-sensitive (multi-scale) deconvolution
 - Calibration
 - DD calibration
- New developments: Computing
 - OpenMP to exploit multi-CPU/core computers
 - Robust pipelines for e2e processing

Computing challenges (backup slide)

- Residual computation (Major Cycle)
 - Most expensive part of post processing
 - I/O limited
 - Required in iterative calibration and imaging
- Component modeling (Minor cycle)
 - Required in MS and MS-MFS
 - Computation limited
- Direction dependent calibration
 - As expensive as imaging

