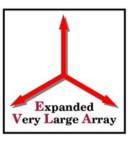

#### Some Illustrative Use Cases

#### **Rick Perley**

**Rick Perley** 

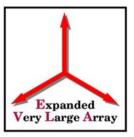



## Science Use Cases

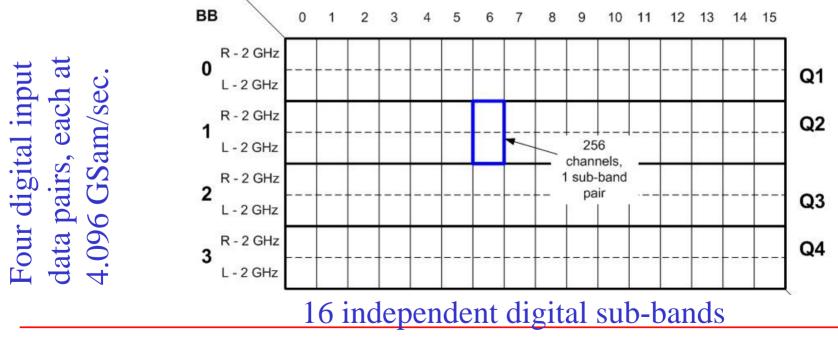


- We have begun careful consideration of science use cases, primarily to:
  - identify the primary correlator modes needed for early science, and
  - identify the modes which will cover all the anticipated science applications.
- I give a few examples to justify our belief that a very few correlator setups will cover an enormous range of early science.




Correlator Basics (3-bit Initial Quantization, 4-bit Re-Quantization)

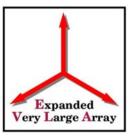



- The correlator comprises four quadrants. Each processes all baselines, for all antennas, for one input baseband pair (BBP).
- Each BBP is subdivided into 16 sub-band pairs (SBP), with BW equal to any of 128, 64, 32, ..., .03125 MHz.
- All 16 \* 4 = 64 SBPs can be tuned independently to (almost) any frequency and BW.
- Each of the 64 SBPs provides 256 spectral channels, which can be divided amongst 1, 2, or 4 polarization products.
- The resources available to any SBP can be given to any other SBP to increase spectral resolution.
- Recirculation is available for any, and all, SBPs, to provide extra, higher spectral resolution.

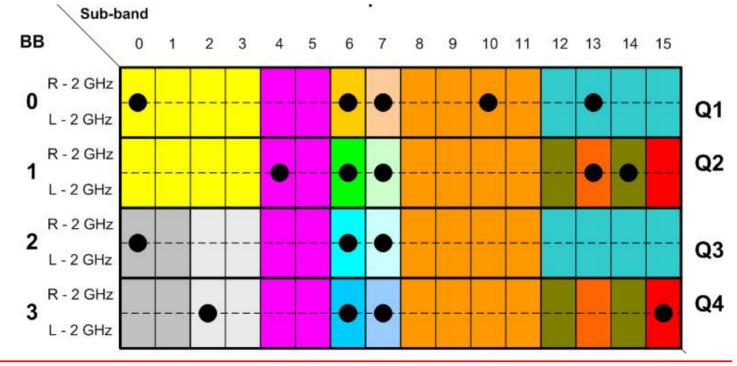


#### Correlator Resource Allocation Matrix



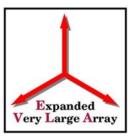

- Each SBP (blue rectangle) provides 256 channels for one, two, or four polarizations (for IQ = 3, RQ = 4)
- Each of the 64 SBPs has a separate, independent frequency and bandwidth.




**Rick Perley** 



#### CRAM example: Resource Concatenation




- Concatenation has been implemented to provide more resources to the 17 individual SBP tunings (black dots).
- In addition, recirculation is available for all SBPs.






## Example 1: Full Band Coverage

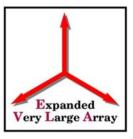


- This means covering the maximum bandwidth, for each band, with all Stokes combinations, with uniform frequency resolution.
- This setup would be used for
  - 'continuum' (maximum sensitivity) observations, where very high spectral resolution is not needed.
  - spectral line surveys, for cases where the basic correlator channelization is sufficient to detect spectral transitions.



#### Summary of Coverage (with 4-bit RQ)




The output consists of 64 full-polarization data streams.

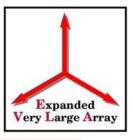
|   | BW    | Δν       | $\Delta { m v}$ | Nch    |
|---|-------|----------|-----------------|--------|
|   | GHz   | kHz      | km/sec          |        |
| L | 1.024 | 31       | 6               | 131076 |
| S | 2.048 | 125      | 12              | 65536  |
| C | 4.096 | 500      | 25              | 32768  |
| X | 4.096 | 500      | 16.5            | 32768  |
| U | 6.144 | 2000/500 | 37/12           | 24576  |
| K | 8.192 | 2000     | 27              | 16384  |
| Α | 8.192 | 2000     | 13              | 16384  |
| Q | 8.192 | 2000     | 6               | 16384  |

**Rick Perley** 



## Data Rate Comment

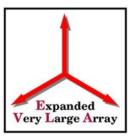



- The correlator has the capability of producing a large volume of data in short time. ☺
- Roughly, the data rate is given by:

$$D \sim 5N_{chan}N_{ant}(N_{ant}+1)/t_{sec}$$
 Byte/sec

- With 1 second averaging, 16384 channels will produce data at a rate of 62 MByte/sec.
- For A-configuration, an averaging time of 2.5 seconds is adequate for full-beam imaging => 25 MB/sec.
- (Previous example provides sufficient spectral resolution for full-beam, full-band imaging for all frequencies and configs.




# High RFI Situations



- For L and S bands, we expect high RFI in some SBP.
- For this case, there is a 7-bit RQ mode, which can be turned on for individual SBPs.
- The extra bit depth comes at a cost in spectral resolution:
  - S-Band: Resolution of 500 kHz (50 km/sec) over full BW with (RR, LL) only, OR with full polarization over 1 GHz total bandwidth.
  - L-Band: Resolution of 500 kHz (100 km/sec) over full BW with all polarizations, OR, 125 kHz (25 km/sec) with (RR,LL) only.
- Most likely, we will be able to use 4-bit RQ in most subbands.




Example 2: Multiple spectral lines.



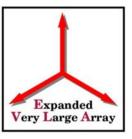
 How many spectral lines can be simultaneously observed, with ~1km/sec. velocity resolution, and with full polarization?



#### 64 Different Lines, with Full Polarization!



|   | BW  | Nch  | Δν  | Δv   | Vel.Cov. | Total  |
|---|-----|------|-----|------|----------|--------|
|   | MHz |      | kHz | km/s | km/sec.  | Nchan  |
| Q | 32  | 256  | 125 | .83  | 213      | 65536  |
| A | 32  | 256  | 125 | 1.1  | 282      | 65536  |
| K | 16  | 512  | 31  | .41  | 210      | 131072 |
| U | 16  | 512  | 31  | .63  | 320      | 131072 |
| X | 16  | 512  | 31  | .94  | 480      | 131072 |
| C | 8   | 1024 | 7.8 | .39  | 400      | 262144 |
| S | 8   | 1024 | 7.8 | .78  | 320      | 262144 |
| L | 4   | 2048 | 2.0 | .39  | 800      | 524288 |


**Rick Perley** 

EVLA Advisory Committee Meeting

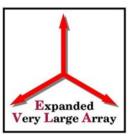
September 6-7, 2007



Variable Resolution for Each Transition



- It is important to note that \*each\* of the 64 spectral lines can be observed with a different spectral resolution.
- With full polarization, the available resolutions will be: 125, 31, 7.8, 2.0, ... kHz.
- With fewer transitions covered, or (RR,LL) only, other resolutions can be obtained.






- At L-band, many SBPs may be in high RFI environments.
- As a worst case, suppose ALL sub-bands need 7-bit RQ. Then:
  - 16 lines can be tuned with full polarization with 0.4 km/sec resolution, OR
  - 32 lines can be tuned with (RR,LL)
     polarization, and the same resolution.

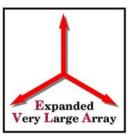


Example 3: Continuum plus Targeted Spectral Lines



- Suppose an observer wants both the full continuum, and to be able to 'target' specific lines with ~1 km/sec spectral resolution.
- What are the possibilities?




# For K, A, Q Bands

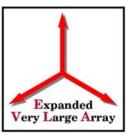


- In these bands, some continuum BW must be given up to obtain high-resolution spectral transitions. Some possibilities are:
  - 1. 6 GHz of continuum, and 16 spectral lines, or
  - 2. 4 GHz of continuum, and 32 spectral lines, or
  - 3. 2 GHz of continuum, and 48 spectral lines.
- All of these with full polarization, and independently adjustable frequency and resolution for each line.
- The continuum is resolved at 2 MHz/channel, the lines at any of 500, 125, 31.2, 7.8, ... kHz.
- This is not a practical example -- no zoom on the spectral lines within the reserved continuum bands.



## C and X Bands




- In the 4-8, and 8-12 GHz bands, one would get:
  - Full 4 GHz BW continuum observed with 2 MHz channel resolution in all four polarization products, giving a total of 8192 channels.

#### PLUS

- 32 individual lines (of arbitrary frequency) observed with 512 channels/spectrum, full polarization, and frequency resolution of 31.2 kHz (1.56 km/sec at 6GHz)
- Total number of channels out = 67584.
- With a 1-second integration time, the output data rate is about 256 MB/sec.



#### Example Four: Claire's Challenge!



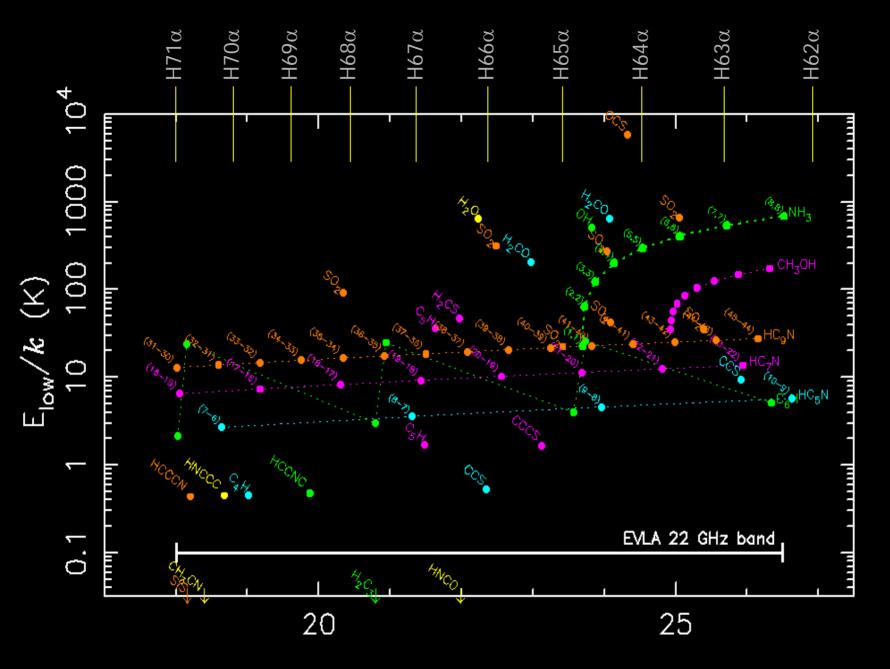
#### Claire has proposed two K-band experiments:

- 1. Studies of a Massive Star-Forming Region
  - 32 molecular transitions, to be observed at 0.2 km/sec, and
  - 8 RRLs, to be observed with 1 km/sec.
  - Some reasonable amount of continuum.
- 2. Studies of a Cold Dark Cloud.
  - 54 molecular transitions (mostly heavy molecules) requiring
     0.01 km/sec resolution.
  - Some reasonable amount of continuum

#### Can the EVLA do all this?






- observe high-density tracers NH<sub>3</sub>, all available transitions from (1,1) to (8,8), and CH<sub>3</sub>OH; gives density and temperature structure of hot cores (very young, massive, protostars)
- observe shock tracers, interaction of protostars with surrounding cloud: transitions of SO<sub>2</sub>, H<sub>2</sub>O, OCS, H<sub>2</sub>CS, H<sub>2</sub>CO, OH
- observe radio recombination lines and continuum emission from a nearby HII region
- spectral resolution required for molecular lines: 0.2 km/s
- spectral resolution required for RRLs: 1 km/s
- need as much line-free continuum as possible for the free-free emission



## Cold dark cloud



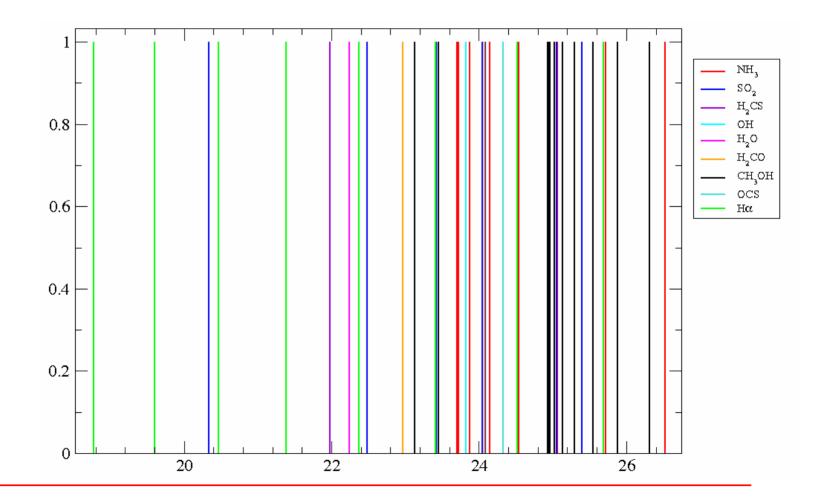
- observe low-energy, long carbon-chain molecules and high-density tracers in a dark cloud to study pre-biotic chemistry: NH<sub>3</sub>, HNCO, C<sub>4</sub>H, C<sub>5</sub>H, C<sub>6</sub>H, C<sub>3</sub>N, CCS, CCCS, HCCCN, HCCNC, HNCCC, HC<sub>5</sub>N, HC<sub>7</sub>N, HC<sub>9</sub>N, H<sub>2</sub>C<sub>3</sub>, CH<sub>3</sub>CN, c-C<sub>3</sub>H<sub>2</sub>
- observe continuum to detect embedded protostars/disks/jets
- spectral resolution required for molecular lines: 0.01 km/s
- need as much line-free continuum as possible for the dust/ionized gas emission



Rest Frequency (GHz)

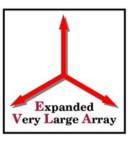


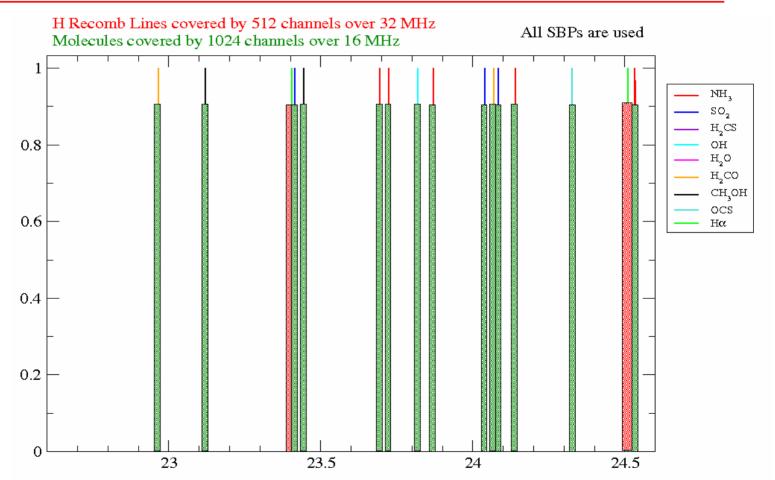
## Massive SFR




- Tune the four frequency pairs to:
  - 1. 18.6 20.6 GHz 3RRL + 1 Mol (12 SBP free)
  - 2. 20.6 22.6 GHz 2 RRL + 3 Mol (11 SBP free)
  - 3. 22.6 24.6 GHz 2 RRL + 14 Mol (all SBP used)
  - 4. 24.6 26.6 GHz 1 RRL + 14 Mol. (one SBP free)
- Set the 32 SBPs covering the molecules to a BW = 16 MHz, providing 1024 channels in both RR and LL.
- Set the 8 SBPs covering the RRLs to BW = 32 MHz, providing 512 channels in both RR and LL.
- This leaves 24 SBPs to cover the continuum (at 128 MHz BW each), or for other transitions.



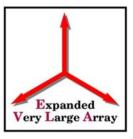

### The entire spectrum





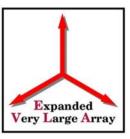



### Within One of the BBPs






**Rick Perley** 




## Cold Dark Cloud



- In this experiment, there are a total of 51 transitions between 18 and 26 GHz
- Tunings:
  - 1. 18 20 GHz: 17 transitions (uses all 16 SBP)
  - 2. 20 22 GHz: 13 transitions (uses 12 SBP, leaving 4 free)
  - 3. 22 24 GHz 12 transitions (uses 12 SBP, leaving 4 free)
  - 4. 24 26 GHz 9 transitions (7 SBP free)
- The required resolution can be obtained with BW = 4 MHZ, providing 4096 channels in each of RR and LL.
- A total of 417792 channels are required for these lines.
- 15 SBPs remain for continuum observations.





- The WIDAR correlator offers tremendous resources for science.
- Simple rules govern the allocation of resources.
- All challenging science cases have (so far) been easily accommodated.
- More tough experiments are eagerly sought!