Project Overview

Mark McKinnon
Project Manager
Outline

- Overall Project Goals
- Organization
- Budget
- Accomplishments in FY 2007
- Schedule
- Project Goals for FY 2008
Project Goals

- Key goal: Improve the observational capabilities of the VLA (except for angular resolution) by a factor of ten or more. Achieve by:
 - Adding new, wide bandwidth receivers
 - Upgrading or replacing current receivers
 - Replacing the data transmission system
 - Replacing the correlator
- Provide a new monitor and control (M&C) system, which must also allow operation of new and old antennas in transition.
- Perform careful astronomical observations to verify that EVLA hardware and software function properly.
- Provide new data management software, to include data post processing, for better access to array data products (a deliverable for NRAO, not the project specifically).
- Contribute to EPO to advance public science education (descoped).
Project Organization

Numbers refer to WBS level 2 tasks.
Budget

- Funding = $93.8M (FY06)
 - NSF project funds $58.7M
 - NRAO contributed effort $16.3M
 - Canadian partner $17.0M
 - Mexican partner $1.8M
NSF Funding Profile

<table>
<thead>
<tr>
<th>Year</th>
<th>Initial ($K)</th>
<th>Current ($K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>1,106</td>
<td>3,000</td>
</tr>
<tr>
<td>2002</td>
<td>6,900</td>
<td>5,000</td>
</tr>
<tr>
<td>2003</td>
<td>5,322</td>
<td>5,322</td>
</tr>
<tr>
<td>2004</td>
<td>5,434</td>
<td>9,340</td>
</tr>
<tr>
<td>2005</td>
<td>5,548</td>
<td>5,340</td>
</tr>
<tr>
<td>2006</td>
<td>5,665</td>
<td>5,440</td>
</tr>
<tr>
<td>2007</td>
<td>5,835</td>
<td>5,835</td>
</tr>
<tr>
<td>2008</td>
<td>6,010</td>
<td>6,010</td>
</tr>
<tr>
<td>2009</td>
<td>6,190</td>
<td>6,190</td>
</tr>
<tr>
<td>2010</td>
<td>6,376</td>
<td>6,376</td>
</tr>
<tr>
<td>2011</td>
<td>4,597</td>
<td>1,130</td>
</tr>
<tr>
<td>Total</td>
<td>58,983</td>
<td>58,983</td>
</tr>
</tbody>
</table>

Table entries in dollars of year, Finalized August 31, 2006.
Budget:
Distribution by WBS Element

<table>
<thead>
<tr>
<th>WBS Element</th>
<th>Description</th>
<th>% of Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>601</td>
<td>Project Management</td>
<td>4.7</td>
</tr>
<tr>
<td>602</td>
<td>Systems Integration</td>
<td>6.6</td>
</tr>
<tr>
<td>603</td>
<td>Civil Construction</td>
<td>2.7</td>
</tr>
<tr>
<td>604</td>
<td>Antennas</td>
<td>4.9</td>
</tr>
<tr>
<td>605</td>
<td>Front End Systems</td>
<td>20.7</td>
</tr>
<tr>
<td>606</td>
<td>LO Systems</td>
<td>6.0</td>
</tr>
<tr>
<td>607</td>
<td>Fiber Optic Systems</td>
<td>10.8</td>
</tr>
<tr>
<td>608</td>
<td>IF Systems</td>
<td>6.0</td>
</tr>
<tr>
<td>609</td>
<td>Correlator</td>
<td>17.5</td>
</tr>
<tr>
<td>610</td>
<td>Monitor & Control</td>
<td>12.6</td>
</tr>
<tr>
<td>611</td>
<td>Data Mgt. & Computing</td>
<td>7.5</td>
</tr>
<tr>
<td>612</td>
<td>Education & Outreach</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Budget: Contingency Status

- Financial health of project is good
- Project contingency, measured as percent of cost to complete, has improved in past year
 - Cost savings through bulk purchases
 - Better understanding of actual costs
 - Efficiency in antenna retrofitting
- Current contingency: $3.40M (14.6%)
 - Does not include work on the correlator, which is supported by Canadian funds
- Sum of weighted risks: $2.75M (McKinnon management talk)
Accomplishments: Antennas

- Original project plan called for antenna retrofit rate of 5 per year
- In August 2006, started antenna retrofits at rate of 6 per year as a schedule recovery measure
- On track to achieve project goal of retrofitting a total of 12 antennas to the EVLA design by September 30, 2007
 - 11 antennas used in routine scientific observations
 - Account for 39.2% of total antenna hours
 - 12th antenna in electronics outfitting
 - 13th antenna in mechanical overhaul
Accomplishments: M&C Software

• Achieved goal of retiring VLA Modcomp control computers by June 27, 2007.
 – Replaced suite of M&C software
 – Built new correlator controller so EVLA M&C system could control correlator
 – Developed hardware and software for a “visibility pipeline” that allows EVLA M&C to write correlator data to archive
 – Reduces operations cost and minimizes reliability risks
 – Allows M&C staff to focus on system integration and testing of prototype WIDAR correlator

• Conducted critical design review of EVLA transition M&C system on December 5-6, 2006 (Sahr/Butler)
Accomplishments: Civil

- Civil construction WBS element is basically complete
 - First WBS element in project to be completed
 - Installed -48 VDC power plant in new correlator room
 - Installed new uninterruptible power supply in EVLA operations area

- All modules for local oscillator, intermediate frequency, and data transmission systems are in full production, except for:
 - round-trip phase module
 - some power supplies
 - 3-bit digitizer (Jackson)
- Wideband (2GHz) signal path, including new gain slope equalizer, shown to meet project specifications.

- Completed installation of fiber pads at all 72 antenna stations
 - Allows antennas to be connected to array optical fibers
 - Provides complete flexibility in locating antennas on the array
- 3-bit, 4Gspss sampler shown to meet performance specifications
 - Will be an EVLA board designed around a commercially-available digitizer chip (Jackson)
Accomplishments: Receivers

- Excellent progress on fabrication of receiver feed horns (Hayward)
 - 22 L-band (1-2 GHz) horns fabricated (goal for FY 2007 was 20)
 - All Ka-band (26.5-40 GHz) and C-band (4-8 GHz) horns fabricated
 - Prototype S-band (2-4 GHz) horn fabricated and tested.
- Will initiate production procurement in early FY 2008, one year ahead of schedule
- Prototype Ka-band receiver assembled.
 - Undergoing cryogenic RF tests
Accomplishments: Receivers

- Good progress on design and fabrication of orthomode transducers (OMT)
 - Resolved cool-down issues with L-band OMT and selected fabrication method
 - C-band OMT expected to meet design specifications
 - RF design of S-band OMT completed recently at Green Bank
- Adjusted approach to OMT design & development for schedule recovery
 - L, C and S design & development now proceeding in parallel instead of sequentially
- Addressed staffing shortage
Accomplishments: Correlator

- Resolved problems with board fabrication and chip testing (Dewdney)
- Conducted critical design review for chip production on June 6, 2007.
 - Chip order placed

Test board for WIDAR correlator chip

Correlator baseline board
Accomplishments: Software for Science Support Systems

- Proposal submission tool (PST)
 - Used for all VLA and GBT proposals for last two proposal deadlines
 - Maintenance and further development undertaken by E2E Operations Division (EOD)
- Developed observation preparation tool (OPT)
 - Replacement for VLA JObserve
 - Tested by NRAO staff in AOC and Charlottesville (Butler demo)
 - Supplemented with tool that accesses calibrator data bases
- Observation scheduling tool (OST) under development
 - Demonstrated to ALMA software group
 - Alpha release in June 2008
- Archive access tool (AAT) will be common with ALMA’s
 - Working with ALMA to standardize binary data format and science data model
 - Development managed by EOD
- CASA (McMullin)
 - Extensive user testing underway
 - Beta release scheduled for September 30, 2007
Accomplishments: Management & Operations

- Developed plans for risk management and earned value
 - Updates conducted with semi-annual updates of WBS cost data sheets. (McKinnon)
- Held inaugural meeting of the Science Advisory Group for the EVLA (SAGE) on May 22-23, 2007 (Lo)
- Issued proposal call in April 2007 for new tuning capability at C-band
 - First two EVLA-only papers submitted for publication (Chandler)
Schedule: Milestone Completion

As of July 13, 2007
Schedule

• Increase in antenna retrofit rate has helped to recover schedule. Maintain rate to achieve project goal of completing antenna retrofits by Q3 2010
• Understaffing and delay in OMT designs have extended installation of last receiver (X-band) into 2013
 – Observing capability still available at 8.0-8.8 GHz. Complete X-band coverage (8-12 GHz) is what is delayed into 2013.
• Correlator status improved:
 – Problems with circuit board fabrication and chip testing have been resolved
 – Steps taken by Canadian partner to merge production stages for schedule recovery
 – Delivery dates:
 • Prototype correlator scheduled for July 2008
 • Installation of final correlator begins May 2009
 • Final correlator installation complete April 2010
 • First science with correlator subset, December 2009
Summary

• The EVLA project team has made a number of significant accomplishments in FY 2007.

• Budget
 – Financial health of the project is good
 – Project contingency, as a percent of cost to complete the project, has improved over the past year

• Schedule
 – On track to complete antenna retrofits in July 2010 as originally planned
 • Efforts to recover project schedule have been successful
 – Installation of last X-band receiver delayed into 2013, but still have interim X-band capability
 – Correlator status has improved over last year
 • Will have observing capability with correlator subset in late 2009
Project Goals FY2008

- Start production of M302/303 utility modules, 10/2007
- Start production of gain slope equalizers, 10/2007
- Relocate deformatter racks to new correlator room, 10/2007
- Finalize joint definition of binary data format, 10/2007
- Develop detailed plan for joint software development, 11/2007
- Start production of Ka-band receiver, 11/2007
- Start production of RTP module, 11/2007
- Fabricate prototype S-band OMT, 11/2007
- Fabricate prototype Ku-band feed horn, 12/2007
- Finalize joint definition of Science Data Model, 12/2007
- Start production of C-band OMT, 12/2007
Project Goals FY2008

- Start production of 3-bit, 4Gsps samplers, 1/2008
- Start production of S-band feed horns, 1/2008
- Complete design of X-band OMT, 2/2008
- Complete fabrication of L-band feed horns, 2/2008
- Conduct science support systems design review, 3/2008
- Conduct correlator critical design review, 6/2008
- Make alpha release of observation scheduling tool, 6/2008
- Conduct on-the-sky tests with prototype correlator, 7/2008
- Complete prototype of S-band receiver, 7/2008
- Start production of L-band receiver, 8/2008
- Retrofit a total of 17 antennas to the EVLA design, 8/2008